
Sciences physiques

ATS – Lycée Louis Armand

Thème 7 : Mécanique des fluides

Travaux dirigés

Exercice faisant uniquement appel à des outils mathématiques )
Exercice facile et/ou proche du cours e
Exercice accessible mais demandant du recul sur le cours et/ou sur les outils mathématiques g
Exercice complexe, de par son côté calculatoire et/ou astucieux f

Il est normal de « bloquer » sur les exercices : personne ne s’attend à ce que vous sachiez les faire en cinq minutes seulement. Il faut cependant persévérer, avoir
le cours à côté afin de voir si un raisonnement similaire a déjà été abordé, et ne pas hésiter à parler avec vos camarades ou votre professeur.

Les problèmes sont issus d’annales de concours et/ou d’examens. Ils sont au moins aussi importants à aborder que les exercices, car ils sont les plus proches (en
terme de rédaction et de questions « bout-à-bout ») de ce que vous aurez en devoir surveillé ainsi qu’au concours.



Chapitre 1 : Statique des fluides

Capacités exigibles et exercices associés

Capacités exigibles Exercice(s)
Donner l’expression de la résultante des forces
pressantes s’exerçant sur un volume élémentaire
de fluide

1.1, problème

Énoncer et établir la relation de la statique des
fluides dans le cas d’un fluide soumis uniquement
à la pesanteur

1.1, 1.2, 1.3, 1.4,
1.6, problème

Exprimer l’évolution de la pression avec l’altitude
dans le cas d’un fluide incompressible pour l’at-
mosphère isotherme dans le cadre du modèle du
gaz parfait

1.5, 1.6, pro-
blème

Questions de cours

□ Donner l’expression du gradient −−→grad F d’un champ scalaire F (x, y, z).
Quelle est l’interprétation géométrique de −−→grad F ?

□ Démontrer l’expression de la résultante des forces de pression s’exerçant
sur un volume élémentaire de fluide dans le cas d’une variation unidirec-
tionnelle de la pression. Généraliser sans démonstration pour une situation
quelconque en utilisant l’opérateur gradient.

□ Établir la relation de la statique des fluides. En déduire les expressions de
dp

dz
selon le sens de l’axe vertical.

□ Pour un fluide incompressible, que peut-on dire de la masse volumique
µ ? En déduire une expression simple de pA − pB en fonction de µ, g, zA

et zB, où A et B sont deux points quelconques du fluide.
□ À l’aide de la relation fondamentale de la statique des fluides, établir l’ex-

pression de p(z) dans une atmosphère isotherme assimilée à un gaz parfait.
Déterminer la longueur caractéristique L de variation de la pression.

□ Donner l’expression de la poussée d’Archimède, et expliquer son origine.

□ Rappeler les expressions du périmètre d’un cercle, de l’aire d’un disque, de
l’aire de la paroi latérale d’un cylindre, de l’aire d’une sphère, du volume
d’un cylindre et du volume d’une boule.

Exercices

1.1 Plongée sous-marine e

L’algue Mozuku est récoltée tout au long du littoral japonais. C’est un
aliment qui contient beaucoup d’antioxydants, vitamines et minéraux. C’est
une sorte d’algue très fine, récoltée dans le haut-fond marin.

1. Les plongeurs retiennent souvent que « dix mètres de profondeur équivaut
à un bar de pression ». Justifier cette phrase.

2. À la profondeur h où est récoltée le Mozuku, la différence de pression
de l’eau et la pression atmosphérique est ∆p = 1,51 × 105 Pa. Calculer
cette profondeur h. On donne ρeau de mer = 1,03 × 103 kg/m3.

3. Calculer la force pressante F exercée par l’eau de mer sur le tympan de
l’oreille du plongeur. Son tympan a une aire S égale à 0,5 cm2.
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Thème 7 : Mécanique des fluides

1.2 Thermomètre à mercure e

Autrefois, on mesurait la pres-
sion atmosphérique en millimètre
ou en centimètre de mercure. Le
baromètre à mercure est constitué
d’un long tube de verre de petite
section rempli de mercure, la déni-
vellation h entre les deux surfaces
libres de mercure donnant la valeur
de la pression atmosphérique.

1. Au sommet de la colonne de mercure (au-dessus de A) règne le vide.
Quelle est la valeur de la pression au point A ?

2. La surface libre en B est en contact avec l’atmosphère. En appliquant la
loi de l’hydrostatique, déterminer la valeur de la pression en B sachant
que la dénivellation h est égale à 760 mm. On donne ρmercure = 13,6 ×
103 kg/m3.

3. Montrer qu’une dénivellation de 1 mm de mercure correspond à une
pression de 133 Pa.

4. Si l’on remplace le mercure par de l’eau, quelle serait la hauteur de la
colonne d’eau pour la même pression atmosphérique ?

1.3 Tension artérielle e

Le cœur est un muscle qui joue le rôle d’une pompe cardiaque et assure la
circulation sanguine. En se contractant de façon rythmée, il met le sang sous
pression et en mouvement.

On définit la tension artérielle TM en un point M du corps humain comme :
TM = pM − patm où pM est la pression artérielle au point M et patm la
pression atmosphérique. La tension artérielle au niveau du coeur, dans le cas
d’un individu debout, vaut par exemple TC = 13,3 kPa.

On donne la masse volumique du sang : ρsang = 1,06 × 103 kg/m3.
1. Quel est l’intérêt de réfléchir en terme de tension artérielle au lieu de

pression artérielle ?
2. La dénivellation entre le cœur et les pieds d’un patient est h1 = 1,3 m.

Quelle est la tension artérielle au niveau des pieds ?
3. La dénivellation entre le cœur et le cerveau du même patient est h2 =

40 cm. Quelle est la tension artérielle au niveau du cerveau ?
4. Si l’individu est couché, quelles seront les tensions artérielles au niveau

des pieds et du cerveau ?
5. Un aide-soignant doit faire une perfusion à une patiente. Quelle doit être

la hauteur h minimale de la perfusion au-dessus du point d’injection pour
que le liquide entre effectivement dans le sang du patient ? On supposera
que la tension artérielle au niveau de l’aiguille est la même qu’au niveau
du cœur, et que la pression au-dessus du liquide perfusé est égale à patm.
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Thème 7 : Mécanique des fluides

1.4 Tube en U g

Soit trois liquides non miscibles (eau, mercure, huile) en équilibre statique
dans un tube en U ouvert à l’air libre comme représenté en figure ci-dessous.
On note µe, µm et µh les masses volumiques respectives de l’eau, du mercure
et de l’huile.

x

z

eau

mercure

huile

h3

h2h1

1. Quelle hypothèse raisonnable peut-on faire pour les trois fluides proposés ?
2. Montrer que dans un liquide incompressible, la pression est une fonction

affine de la profondeur z.
3. Comment se traduit la condition d’équilibre pour chacune des interfaces

air-eau, eau-mercure, mercure-huile et huile-air ?
4. En déduire l’expression de la pression à chacune des interfaces précédentes.
5. En déduire une expression de µh en fonction de µe, µm, h1, h2 et h3.

1.5 Montée d’un ballon-sonde f

Penser à utiliser l’expression de la poussée d’Archimède !

Considérons une atmosphère isotherme de température T , modélisée par un
gaz parfait : on a donc une pression p(z) = p0e−z/λ avec λ = RT

Mairg
= 7,8 km.

Un ballon-sonde sphérique déformable, contenant n0 moles de dihydrogène
(gaz parfait de masse molaire MH2 = 2 g · mol−1), est posée à la surface
terrestre. Il est constitué d’une enveloppe de masse mB = 1,2 kg.

1. Démontrer l’expression de p(z).
2. Faire le bilan des actions mécaniques extérieures appliquées au ballon.
3. Quelle doit-être la quantité nmin minimale de dihydrogène pour que le

ballon s’envole ?
4. On prend n0 = 2nmin. Déterminer l’altitude H à laquelle le ballon va

éclater, en supposant que son volume maximal est Vmax = 10V0, où V0
est son volume initial.

1.6 Atmosphère avec gradient de température f

Déterminer l’équation de p(z) dans l’atmosphère, supposée être un gaz
parfait, si l’on prend T (z) = T0 − αz avec α une constante. z = 0 représente
la surface de la Terre, où p = p0.
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Thème 7 : Mécanique des fluides

Problème

On assimile l’atmosphère terrestre à un gaz parfait de masse molaire M =
29 g · mol−1 et on note R = 8,3 J · K−1 · mol−1 la constante des gaz parfaits.
Dans l’espace étudié, on pourra considérer la température T0 de ce gaz
uniforme : T0 = 300 K. Le sol terrestre est localement plan, on note Oz l’axe
vertical ascendant avec une origine O prise au sol. On note P (M) et ρ(M)
respectivement la pression et la masse volumique en un point M de l’espace.
L’étude sera menée dans le référentiel terrestre supposé galiléen. On note −→g
le vecteur champ de pesanteur terrestre avec ∥−→g ∥ = 10 m/s2.

1. On étudie un volume mésoscopique dV de gaz. Ce système statique est
soumis à son poids et à la résultante des forces pressantes. Donner la
relation vectorielle décrivant l’immobilité de ce volume dV .

2. Exprimer ρ(M) en fonction de P (M), R, M et T0.

3. Montrer que dP

dz
+ P

δ
= 0 où δ = RT0

Mg
puis calculer δ.

4. On note P (z = 0) = P0, donner l’expression de P (z) et tracer son allure.
Les smartphones sont munis d’un capteur de pression. Le jour de l’expérience,

un opérateur mesure une pression de 1000,00 hPa au niveau du sol et de
999,80 hPa sur sa tête.

5. On admet que pour x ≪ 1, on a ex ≈ 1 + x. Estimer, en justifiant
l’utilisation du développement précédent, la taille H de cet opérateur.

Dans la suite, on suppose que l’incertitude-type u(H) sur la valeur de H
n’est due qu’à l’incertitude-type u(P ) = 0,02 hPa sur la lecture des pressions.

6. On obtient u(H) ≈ 30 cm. Sachant que l’opérateur a une taille de 1,75 m,
commenter la qualité de cette mesure.
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Chapitre 2 : Description d’un fluide en écoulement

Capacités exigibles et exercices associés

Capacités exigibles Exercice(s)
Analyser des vidéos, des simulations ou des car-
tographies d’écoulement. 2.1, 2.3, 2.4

Réaliser un bilan de masse ou de volume sur une
portion de fluide, les débits étant connus. 2.8

Exprimer et calculer le débit volumique (resp. :
massique) du fluide à travers une surface quel-
conque à l’aide du flux du vecteur vitesse (resp. :
vecteur densité courant de masse), considéré
comme uniforme.

2.4, 2.5, 2.6, 2.7

Questions de cours

□ Définir le débit massique et le débit volumique. Donner leurs unités SI
respectives.

□ Montrer que dans un écoulement stationnaire (respectivement : incom-
pressible), le débit massique (respectivement : le débit volumique) se
conserve le long d’un tube de courant.

□ Énoncer puis démontrer l’équation locale de conservation de la masse
dans un écoulement de fluide unidirectionnel. Généraliser au cas tridimen-
sionnel.

□ Montrer que la divergence du champ des vitesses d’un fluide incompressible
est nulle en tout point.

Exercices

2.1 Analyse de cartes de champs e

Chaque figure ci-après représente la carte de champ d’un écoulement sta-
tionnaire bidimensionnel. Ces écoulements sont-ils incompressibles ?

2.2 Caractérisation d’un écoulement (1) e

On considère un écoulement dont le champ eulérien des vitesses est
−→v (M, t) = −Ωy.−→ux + Ωx.−→uy + v0.−→uz. Cet écoulement est-il incompressible ?
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Thème 7 : Mécanique des fluides

2.3 Caractérisation d’un écoulement (2) e

On considère un écoulement dont le champ eulérien des vitesses est
−→v (M, t) = ay.−→ux + ax.−→uy. Cet écoulement est-il incompressible ?

2.4 Jet d’eau e

À quelle vitesse est éjectée l’eau du jet de Genève, de diamètre D = 10,7 cm,
alimenté par une pompe débitant 500 L · s−1 ?

2.5 Cours d’eau e

On considère l’écoulement homogène et stationnaire de l’eau dans un fleuve
de section rectangulaire, et de profondeur H constante. Le champ des vitesses
est supposé uniforme au sein d’une section du fleuve. Loin en amont du pont,
la vitesse est −→v0 .

L/4

L−→v0

1. Dessiner intuitivement des lignes de champ.
2. Déterminer la vitesse vp de l’eau entre les piles du pont.
3. Quel lien peut-on faire entre vitesse de l’écoulement et espacement des

lignes de champ ?

2.6 Lien section-vitesse pour un écoulement incom-
pressible
g

Soit un écoulement incompressible dans une tuyère dont la vue en coupe est
donnée ci-dessous. On suppose le schéma à l’échelle 1 :1, et on a v0 = 10 m·s−1.

(O, z)−→v0

1. Calculer le débit volumique en entrée. Pourquoi peut-on dire qu’il est
égal en toute section de la tuyère ?

2. Calculer les vitesses en chacune des sections indiquées en traitillés ; on
admet que les vitesses y sont uniformes.
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Thème 7 : Mécanique des fluides

2.7 Fontaine anti-incendie g

Soit l’écoulement stationnaire produit par une pompe, imposant un débit
d’eau Dm = 200 kg · min−1 dans une canalisation cylindrique débouchant sur
un espace circulaire contenu entre deux disques parallèles de rayon R = 10 cm
séparés de d = 1 cm.

Dm

d

R

Calculer la vitesse avec laquelle l’eau est éjectée en périphérie de la fontaine.

2.8 Durée de remplissage f

On cherche à remplir une piscine de dimension approximative 2 m × 10 m ×
5 m (2 m étant la profondeur). Le robinet fournit un débit de 200 g · s−1.

1. Calculer la durée de remplissage.
2. Même question si, en plus, il pleut sans discontinuer avec une pluviométrie

de 8 mm · h−1.
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Chapitre 3 : Énergétique d’un fluide en écoulement

Capacités exigibles et exercices associés

Capacités exigibles Exercice(s)
Énoncer la relation de Bernoulli en précisant les
hypothèses tous

Établir un bilan de puissance pour un circuit
hydraulique ou pneumatique avec ou sans pompe

3.3, 3.4, 3.5,
problème

Questions de cours

□ Établir la relation de Bernoulli à partir du premier principe de la ther-
modynamique appliqué à un système ouvert pour un écoulement parfait,
incompressible et stationnaire entre deux points situés sur une même
ligne de courant.

□ Énoncer la relation de Bernoulli ainsi que toutes ses hypothèses.
□ (Exercice de l’effet Venturi) Soit un écoulement stationnaire et incom-

pressible d’un fluide parfait dans une canalisation horizontale. Montrer
qu’un rétrécissement de section induit une modification de la pression.

□ (Exercice de la vidange de Torricelli) Soit une cuve se vidant par le bas.
Le fluide contenu dans la cuve est parfait et incompressible, et le niveau
d’eau en haut de la cuve est constant. On note H la dénivellation entre
le haut de la cuve et sa sortie. Déterminer la vitesse v de l’écoulement
en sortie.

□ Soit un fluide incompressible en écoulement stationnaire ; I et F sont
deux points d’une même ligne de courant, avec I en amont et F en aval.
Au cours de l’écoulement, il y a une perte de charge totale ∆p et une
pompe de puissance P . Énoncer la relation de Bernoulli généralisée dans
ce cas de figure.

Exercices

3.1 Hauteur maximale d’un jet d’eau e

Le débit massique à la base du jet d’eau vertical de Genève est Dm =
500 kg · s−1. Le diamètre de la section à la base est d = 11 cm. On admet que
l’eau du lac est captée par la pompe proche de la surface.

1. Faire un schéma faisant apparaître notamment le jet, le lac et la pompe.
2. Trouver la hauteur h du jet.
3. Quelle est la puissance mécanique P nécessaire pour l’alimenter ?

3.2 Forme d’un filet d’eau e

Un filet d’eau, de vitesse initiale
V , coule verticalement vers le bas.
On note R le rayon du robinet ; l’axe
(O, x) est orienté vers le bas.

On note M un point quelconque
de profondeur x ; la vitesse eulé-
rienne de l’écoulement en ce point
est v(x), et r(x) est le rayon de
l’écoulement.

1. Quel est le lien entre v(x), r(x), V et R ? Justifier.
2. En appliquant le théorème de Bernoulli (et en rappelant et vérifiant les

hypothèses d’utilisation), déterminer l’expression de r(x). Tracer l’allure
de la courbe et commenter.
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Thème 7 : Mécanique des fluides

3.3 Puissance d’une pompe g

On considère un écoulement parfait ; on note Dv = 3 L · s−1 le débit
volumique et µ = 1 kg · L−1 la masse volumique du fluide supposé homogène.
Le régime est stationnaire.

Les sections des conduites en amont et en aval sont identiques. La pression
en amont de la pompe est p1 = 1,1 bar ; le fluide est rejeté en aval à une
dénivellation positive h = 5 m dans l’atmosphère.

Déterminer et calculer la puissance d’alimentation de cette pompe, de
rendement η = 63%.

3.4 Optimisation d’une canalisation g

Déterminer lequel des deux montages hydrauliques ci-dessous minimise la
puissance nécessaire pour acheminer le fluide de son entrée (bas du schéma)
à sa sortie pour un débit Dv = 1 L · s−1, la pression étant la même en entrée
qu’en sortie. Calculer cette puissance.

45◦

La section de la canalisation cylindrique est de rayon R = 3 cm constant, le
fluide transporté est de l’eau. On a L = 1 m.

On fournit les documentations suivantes sur les pertes de charges dans une
canalisation, où la perte de charge singulière est J = K

2 µv2 avec :

3.5 Pression artérielle chez la girafe f

Une girafe moyenne fait environ 5,5 m, la distance entre son cœur et son
cerveau étant d’environ 2,5 m.

Données :
— La masse volumique du sang est proche de celle de l’eau ;
— Tension artérielle au niveau du cœur : pcoeur − patm = 5 mmHg ;
— Tension artérielle au niveau du cerveau : pcerveau − patm = 100 mmHg ;
— Rayon moyen de l’artère carotide : R = 0,6 cm ;
— 1 bar = 750 mmHg ;
— Viscosité du sang η = 4 × 10−3 Pl (le poiseuille Pl est l’unité SI de la

viscosité).

1. En négligeant d’abord la viscosité du sang, calculer la puissance P que le
cœur de la girafe doit fournir pour maintenir irrigué son cerveau.
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Thème 7 : Mécanique des fluides

2. Quel problème physiologique la girafe peut-elle ressentir lorsqu’elle relève
brusquement la tête après avoir bu dans une mare ?

3. Critiquer les hypothèses faites à la question 1. La valeur trouvée est-elle
sur- ou sous-estimée ?

4. En utilisant la formule de Poiseuille des pertes de charge sur une longueur ℓ

de conduite de rayon r : J = 8ηDvℓ

πr4 , reprendre la question 1. Commenter.
5. Reprendre le raisonnement précédent en remplaçant l’artère par dix

artérioles de rayon dix fois moindre, mais véhiculant le même débit total.

3.6 Durée de vidange d’un récipient f

Soit un récipient cylindrique de hauteur H = 50 cm, de rayon R = 10 cm,
rempli d’un liquide homogène supposé parfait. On repère son niveau par h(t),
et on fore un orifice circulaire de rayon r = 5 mm dans le fond.

1. Montrer que la vitesse u de descente du niveau d’eau est négligeable face
à la vitesse v en sortie.

2. Quel est le lien entre u et h ? En déduire une expression de v en fonction
de ḣ.

3. Le théorème de Bernoulli est-il applicable ici ? Réponse à justifier fine-
ment...

4. Par application du théorème de Bernoulli, montrer que v2 ≈ 2gh(t).

5. Déduire des questions précédentes que R4

r4 ḣ2 = 2gh.
6. Dériver l’équation par rapport au temps t ; déterminer alors h(t).
7. Quelle est alors la durée ∆t pour vider le récipient ?

Problème

L’installation d’une hotte aspirante placée au-dessus d’une plaque de cuisson
nécessite une réflexion avant achat. Par exemple, il convient d’apprécier le débit
volumique d’air que le dispositif peut traiter afin de renouveler convenablement
les gaz présents dans la cuisine.

Généralités

1. Pour assurer un bon renouvellement de l’air d’une cuisine, la hotte doit
pouvoir déplacer 10 fois par heure le volume d’air de votre cuisine. Estimer
le débit volumique Dv que la hotte doit imposer pour une cuisine de
surface 20 m2 et de 2,5 m de hauteur de plafond.

2. Dans la documentation donnée par le constructeur MIELE™, on retrouve
le schéma ci-dessous pour un système d’évacuation d’air vers l’exté-
rieur. Expliquer, succinctement et clairement, pourquoi l’une des deux
installations n’est pas acceptable.

Dans la suite, nous allons chercher à évaluer la puissance Pu qu’une hotte
doit fournir à l’air ambiant pour qu’il soit évacué vers l’extérieur avec un
débit volumique Dv. Nous travaillerons avec les hypothèses suivantes (dans le
référentiel supposé galiléen lié à la cuisine où le champ de pesanteur terrestre
est g ≈ 10 m/s2) :

— On négligera, dans un premier temps, la viscosité du gaz (et tout autre
phénomène de diffusion).

— L’écoulement étudié est stationnaire et sa vitesse suffisamment faible
pour considérer le fluide de masse volumique ρ uniforme.

— Le moteur de la hotte, avec ses pales, impose un écoulement contenu au
sein même de la hotte, dans une canalisation horizontale menant le gaz
à l’extérieur mais aussi dans un cylindre de hauteur h situé sous la hotte.
Ce cylindre, de rayon RA, est de même axe de symétrie de révolution
que celui de la hotte (cf. schéma suivant).
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Thème 7 : Mécanique des fluides

— Les points B et C appartiennent à une même ligne de courant.
— En dehors de l’écoulement, l’air de la cuisine est au repos, à la pression

atmosphérique P0 = 1 bar et à la température T0 = 300 K.

Étude entre les points B et C

Le fluide étudié est dans la canalisation horizontale de rayon RB constante.
Le champ des vitesses est supposé horizontal et uniforme sur chaque section
droite de cette canalisation. Les points B et C sont sur une même horizontale.
Le point C, à l’extérieur, est à la pression atmosphérique. On note vB et PB

la vitesse et la pression en B et vC et PC la vitesse et la pression en C.
3. Quelle est la relation entre vB et vC ? Justifier.
4. Démontrer, en tenant compte des hypothèses, que PB = P0.

Étude entre les points A et B

5. On a RA = 4RB. Justifier que vA ≪ vB.
6. En effectuant un bilan de puissance entre A et B, on montre que :

PB − PA

ρ
+ v2

B − v2
A

2 + g(zB − zA) = Pu

Dv

Préciser en quoi ce bilan se distingue de celui effectué avec la relation de
Bernoulli appliquée à un écoulement conservatif.

7. Démontrer que Pu ≈ ρDv

(
3gh + D2

v

2
(
πR2

B

)2
)

.

Bilan et analyse

8. En utilisant le modèle du gaz parfait, exprimer puis calculer la masse
volumique ρ du gaz étudié. On donne sa masse molaire M ≈ 30 g · mol−1

et on prend R ≈ 10 J · K−1 · mol−1.
9. On considère : h = 0,5 m, RB = 0,1 m, Dv = 0,1 m3/s. Estimer la valeur

de Pu. Cette valeur est-elle réaliste pour une hotte de cuisine ?
Une hotte doit aussi permettre le filtrage de l’air aspiré. Un filtre est

alors placé en entrée de la hotte. Les molécules constituant le filtre retiennent
certaines particules et l’air aspiré devient alors de meilleure qualité. La présence
du filtre impose cependant de prendre en compte la viscosité de l’air qui entraîne
un phénomène de perte de charge important entre les points A et B.
10. Pour un filtre encrassé utilisé en cuisine, on a un travail massique lié

aux forces de viscosité de 1000 J · kg−1. Estimer la puissance Pf que le
moteur doit fournir pour cette seule perte de charge (on prendra encore
Dv = 0,1 m3/s). Conclure.
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