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Théme 8 : Phénomenes électriques

Cours

FIGURE 1 — Ingénieur et physicien frangais, Charles-Augustin de Coulomb (1736-1806) établit la loi
fondamentale de I’électrostatique, qui décrit la force entre deux charges ponctuelles. Il utilise une
balance de torsion pour confirmer expérimentalement que cette force décroit en 1/72. Ses travaux
posent les bases du concept de champ électrique. L’unité de charge électrique (C) porte son nom.
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FIGURE 2 — Mathématicien allemand, Carl Friedrich Gauss (1777-1855) applique ses travaux en analyse
au calcul du champ électrique. Il énonce le théoréme de Gauss, qui relie le flux du champ électrique
a la charge totale enfermée. Ce résultat fondamental permet de calculer des champs électrostatiques
dans des situations symétriques avec une grande élégance.
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Chapitre 1 : Des charges électriques au champ électrique

b Objectifs :

1.1

Exprimer le champ électrostatique créé par une charge ponctuelle.

Citer quelques ordres de grandeurs de champs électriques.

Exploiter une carte de lignes de champ électrostatique fournie.

Choisir une modélisation adaptée a la géométrie du probleme étudié.

Identifier des situations ou la distribution de charge peut étre modélisée par une distribution infinie.

Evaluer la charge totale d'une distribution continue et uniforme dans des situations de géométrie
simple.

Identifier les plans de symétrie et d'antisymétrie éventuels d'une distribution de charges. Identifier les
invariances d'une distribution de charges. Exploiter ces symétries et invariances pour caractériser le
champ électrique créé et prévoir la topographie des lignes de champ.

Déterminer le flux du champ électrostatique dans des géométries simples.

Enoncer le théoreme de Gauss. Exploiter le théoréme de Gauss pour calculer un champ électrostatique
créé par une distribution présentant un haut degré de symétrie (distribution a symétrie sphérique,
plan uniformément chargé).

Exploiter qualitativement la topographie des lignes de champ électrostatiques dans le vide pour prévoir
les variations de la norme du champ le long des tubes de champ.

Définition du champ électrostatique

1.1.1 Charges

D’un point de vue mésoscopique et macroscopique, les répartitions de charges ne sont pas forcément
ponctuelles. Elles peuvent étre linéaires (fil chargé), surfaciques (plan chargé) ou volumiques (espace chargé)
(voir figure [1.1)). On définit alors :

La charge linéique ), telle que la charge infinitésimale d@ d'un fil de longueur infinitésimale d/¢
vaille : dQ = X d? (et alors Q = [, AdY);

La charge surfacique o, telle que la charge infinitésimale d@ d’un plan de surface infinitésimale d.S
vaille : dQ = o dS (et alors Q = |J_ odS;

La charge volumique p, telle que la charge infinitésimale d@Q d'un espace de volume infinitésimal dV/
vaille : dQ = p dV (et alors @ = [o,ce PV

urface

/// \\
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FIGURE 1.1 — De I’aspect microscopique et quantifié a 1’aspect mésoscopique et continu pour une
densité linéique de charges.
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Question 1 : Quelles sont les unités de A\, o et p?

Question 2 : Calculer la charge totale ) d'un fil de longueur L et de densité linéique de charge )\

uniforme.

Question 3 : Calculer la charge totale () d'une sphére de rayon R et de densité volumique de charge pg

uniforme.

1.1.2 Champ et force électrostatiques

Loi de Coulomb

Soit deux charges ponctuelles ¢ et g séparées d'une distance d. La loi de Coulomb
énonce que les deux charges exercent I'une sur I'autre une force électrostatique attractive

ou répulsive telle que :
a4 —

471'50 d2 12

ol g9 = 8,85 x 10712F - m~! est la permittivité diélectrique du vide et e;,5 est le
vecteur unitaire allant de g1 vers ¢o.

e
F1—>2=

¥ Remarque : Cette force a une expression trés similaire a celle établie par la loi de gravitation universelle

mimo —
g7~61—>2-

Question 4 : Faire un schéma de la situation. Dans quels cas la force électrostatique est-elle attractive ?

By

—2 = =

répulsive ?
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Force électrostatique, champ électrostatique

On définit le champ électrostatique E d'une distribution de charges a partir de la force
e ressentie par une charge ponctuelle d'essai g dans ce champ :

F=qF
1

Le champ électrostatique s'exprimer en volt par metre V.- m™-.

& Remarque : On apercoit a nouveau une analogie avec le champ de pesanteur, ou P = m.g.

Question 5 : Une charge ponctuelle positive ira-t-elle dans le méme sens ou dans le sens opposé du
champ E'7 Et pour une charge négative ?

- . 7 - H 1
Question 6 : Exprimer le champ électrostatique Ey d'une charge ponctuelle gg.

Théoreme de superposition

= =
Si deux champs électrostatiques F; et Fy coexistent en un point M, alors le champ
électrostatique total en ce méme point M vaut = F1 + E5. C'est le théoréeme de
superposition.

1.2 Symétries du champ électrostatique et invariances

1.2.1 Symétries du champ électrostatique

Plans de symétrie et d’antisymétrie des charges

On dit qu'un plan IT est un plan de symétrie des charges si, lorsqu'une charge existe d'un
cOté de ce plan, alors une charge de méme signe et de méme valeur existe de |'autre
cOté de ce plan, symétriquement a la premiere charge.

On dit qu'un plan II est un plan d'antisymétrie des charges si, lorsqu'une charge existe
d'un coté de ce plan, alors une charge de signe opposé et de méme valeur absolue
existe de |'autre coté de ce plan, symétriquement a la premiére charge.
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Question 7 : Lister les plans de symétrie pour une sphére uniformément chargée en volume.

Question 8 : Lister les plans de symétrie pour un plan infini uniformément chargé en surface.

Question 9 : Peut-il exister un plan d'antisymétrie pour une unique charge?

On représente en figure les lignes de champ électrostatique lorsque deux charges ponctuelles sont a

~2) =\

|

\VZ

FIGURE 1.2 — Lignes de champ électrostatique pour un systéme a deux charges. Gauche : les deux
charges sont de méme signe et de méme valeur ; droite : les deux charges sont de signes opposés et de
méme valeur absolue. Par http ://commons.wikimedia.org/wiki/User :Chanchocan — Travail personnel,
CC BY-SA 3.0, https ://commons.wikimedia.org/w/index.php ?curid=951213
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Question 10 : Que peut-on dire du champ électrostatique pour les plans de symétrie ?

Question 11 : Que peut-on dire du champ électrostatique pour les plans d’antisymétrie 7

Direction du champ électrostatique selon la symétrie des charges

Soit un point M appartenant a un plan de symétrie Il des charges. Le champ électrosta-

tique E (M) est alors contenu dans ce plan : E (M) € II;.
Soit un point M appartenant a un plan d'antisymétrie II, des charges. Le champ électro-

statique F (M) est alors orthogonal a ce plan : E (M) L II,.

1.2.2 Invariances

Soit une répartition de charges continue ou discréte dans |'espace repéré par trois coordonnées. Selon le
degré de symétries du probléme, on va préférer différents types de coordonnées. Dans I'ordre :

1. Si la répartition présente un centre de symétrie, on utilisera les coordonnées sphériques;;
2. Si la répartition présente un axe de symétrie, on utilisera les coordonnées cylindriques;;

3. Si la répartition présente un plan de symétrie, on utilisera les coordonnées cartésiennes.

Invariances en symétrie centrale

Prenons I'exemple d'une sphére chargée en volume, pas forcément de maniére uniforme mais telle que le
centre O de la sphére soit un centre de symétrie des répartitions de charges (voir figure [1.3]).

FIGURE 1.3 — Répartition de charges & symétrie centrale.

En coordonnées sphériques, on peut repérer un point M par :
— La distance r entre le point M et le centre O;
— La colatitude 6 du point M ;
— La longitude ¢ du point M.
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La densité volumique de charges s'écrit donc p(r, @, ) ; a priori, la norme du champ électrostatique créé
s'écrit donc également E(r, 0, ).

Question 12 : Pour un probleme a symétrie centrale, de quelles variables dépend réellement p ? Expliquer
alors de quelles variables dépend la norme du champ électrostatique E.

Invariances en symétrie centrale

Si la répartition de charges présente une symétrie centrale p(r) (on dit qu'il y a invariance
selon les coordonnées 6 et ), alors la norme du champ électrostatique ne peut dépendre
queder: E = E(r).

W Remarque : Le raisonnement est similaire pour une répartition surfacique de charges o.

Invariances en symétrie axiale

Prenons I'exemple d'un cylindre chargé en volume, pas forcément de maniére uniforme mais telle que
I'axe de révolution (O, z) du cylindre soit un axe de symétrie des répartitions de charges (voir figure .

FIGURE 1.4 — Répartition de charges a symétrie axiale.

En coordonnées cylindriques, on peut repérer un point M par :
— La distance r entre le point M et I'axe (O, z) ;
— L’angle polaire 8 du point M ;
— La cote z du point M.

La densité volumique de charges s'écrit donc p(r, 0, z) ; a priori, la norme du champ électrostatique créé
s'écrit donc également E(r,0, z).

Question 13 : Pour un probléme a symétrie axiale, de quelles variables dépend réellement p? Expliquer
alors de quelles variables dépend la norme du champ électrostatique FE.
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Question 14 : Si le fil est infini et uniformément chargé selon la direction z, que peut-on alors dire de
p?de E7?

Invariances en symétrie axiale

Si la répartition de charges présente une symétrie axiale p(r, z) (on dit qu'il y a invariance
selon 6), alors la norme du champ électrostatique ne peut dépendre que de r et z :
E = E(r, 2).

Si la répartition de charges présente en plus une uniformité p(r) selon I'axe de révolution
(invariance selon z), alors le champ électrostatique ne peut dépendre que de r : E = E(r).

W Remarque : Le raisonnement est similaire pour une répartition surfacique de charges o ou une
répartition linéique de charges .

Invariances en symétrie plane

Prenons I'exemple d'un plan infini chargé en volume, pas forcément de maniere uniforme mais telle que
tout plan orthogonal au plan infini soit un plan de symétrie des répartitions de charges (voir figure |1.5]).

(0,2)

T

(0, )

FIGURE 1.5 — Répartition de charges a symétrie plane.

En coordonnées cartésiennes, on peut repérer un point M par :
— L'abscisse x;
— L’ordonnée y;
— La cote z.

La densité surfacique de charges s'écrit donc p(x,y, z); a priori, la norme du champ électrostatique créé
s'écrit donc également E(x,y, z).
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Question 15 : Pour un probléme a symétrie plane, de quelle variable dépend réellement p? Expliquer
alors de quelles variables dépend la norme du champ électrostatique FE.

Invariances en symétrie plane

Si la répartition de charges est plane et uniforme (invariances selon z et y), alors la norme
du champ électrostatique ne peut dépendre que de z : E = E(z).

& Remarque : Le raisonnement est similaire pour une répartition surfacique de charges o...

1.3 Théoreme de Gauss

1.3.1 Enoncé et interprétation

Théoreme de Gauss

Le théoreme de Gauss dit que le flux du champ électrostatique ﬁ a travers une surface
fermée S orientée vers |'extérieur est proportionnelle a la charge électrique contenue dans

cette surface :
ﬁ xt Qint
(b E@a)-ds(ary=t = ==
MéES €0

L'interprétation du théoreme de Gauss est simple :

e Toute charge () positive crée un champ électrique fuyant en ligne droite ladite charge. Ainsi, si I'on
prend une surface S fermée englobant cette charge, on pourra compter toutes les lignes de champ
électrostatique fuyant () en calculant son flux a travers la surface S ;

e Par ailleurs, la norme du champ électrostatique est d'autant plus importante que la charge @) est
grande;

e Ainsi, le flux du champ électrostatique est proportionnel a la charge électrique intérieure : c'est le
théoréme de Gauss.

moYJUs

FIGURE 1.6 — Illustration du théoréme de Gauss. A gauche, la charge intérieure & la surface de Gauss
est positive, tout comme le flux (comptabilisé positivement vers l'extérieur) du champ électrostatique.
A droite, la charge intérieure est nulle, tout comme le flux du champ électrostatique (les entrées
compensent les sorties). Image extraite de https://byjus.com/jee/gauss-law/.
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Pour une charge négative, on a E qui est orienté vers l'intérieur, donc ﬁ(M) -d

Sy

*t <0, ce qui

est cohérent avec le théoréme de Gauss.

L'utilité principale du théoréme de Gauss est de pouvoir exprimer le champ électrostatique ﬁ(M) en
tout point M, si suffisamment de symétries permettent de simplifier le probleme. Pour cela :

1.

On choisit un point M dans I'espace, et on identifie les plans de symétrie et/ou d'antisymétrie passant
par ce point : on en déduit la direction du champ E(M) ce qui permet d'écrire E(M) = E(M).ud
avec 4 un vecteur unitaire;

On recense les invariances dues aux répartitions des charges : on en déduit les variables effectives de
E(M);

On choisit une surface de Gauss passant par le point M sur laquelle le champ ﬁ est uniforme :
I'expression du flux du champ électrostatique se simplifie;

. On calcule la charge intérieure a la surface de Gauss, généralement via une intégration : Qint = [ A d¢

ou Qint = JIU dS ou Qint = ffj‘p dv;
On applique le théoréme de Gauss pour déterminer E(M), puis ﬁ(M)

1.3.2 Applications

Champ créé par une boule chargée uniformément en volume

Soit une boule de rayon R, de densité volumique de charge uniforme py. On note Qp = fff po dV la

boule

charge totale de la sphére.
On fixe un point M quelconque dans I'espace a I'extérieur de la sphére.

Question 16 : Faire un schéma du probléme. Quels plans passant par M sont de symétrie par rapport
aux charges? En déduire la direction du champ électrostatique en M.

Question 17 : Quelles invariances observe-t-on? En déduire les variables de la norme du champ
électrostatique F.
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W Remarque : i, ﬁ = E(r)u_>r A l'oral, on dira que E dépend de r, et que ﬁ est dirigé selon ;.

Question 18 : Quelle surface de Gauss va-t-on choisir ici ? Justifier.

Question 19 : En déduire une expression simplifiée du flux électrostatique.

Question 20 : Que vaut Qjnt ? En déduire I'expression de E puis de ﬁ
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On prend a présent un point M dans la boule : 0 < r < R.

Question 21 : Faire un nouveau schéma.

Question 22 : L'expression du flux électrostatique est-elle modifiée ? Quelle est la différence avec le
probléme précédent ?

Question 23 : Calculer la charge intérieure a la surface de Gauss. On indiquera clairement I'objet sur
lequel on intégre. En déduire, par application du théoréme de Gauss, I'expression du champ électrostatique.
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Champ créé par un plan infini chargé uniformément en surface
Soit un plan infini d’équation z = 0 et de densité surfacique de charge uniforme oy.

On fixe un point M quelconque dans I'espace a I'extérieur du plan.

Question 24 : Faire un schéma du probléme. Quels plans passant par M sont de symétrie par rapport
aux charges? En déduire la direction du champ électrostatique en M.

Question 25 : Quelles invariances observe-t-on? En déduire les variables de la norme du champ
électrostatique F.

Question 26 : Que peut-on dire de ﬁ(z) et ﬁ(—z) ? En déduire un lien entre E(z) et E(—z), ou
E(z)=E(z)-2.
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Question 27 : Montrer qu'un cylindre de hauteur 2z est une surface de Gauss convenable. Simplifier
I'expression du flux électrostatique en divisant la surface en trois secteurs.

Question 28 : Que vaut Qint ? En déduire I'expression de E puis de ﬁ

1.3.3 Conservation du champ électrostatique

Considérons une distribution quelconque de charges; on trace les lignes de champ électrostatique

A‘

FI1GURE 1.7 — Lignes de champ électrostatique d’une distribution de charge. Source : techno-science.net

)

0

(
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Question 29 : On choisit une surface fermée quelconque ne contenant aucune charge. Que peut-on
dire du flux & du champ électrostatique ?

Question 30 : Que peut-on en déduire sur les « entrées et sorties » du champ électrostatique dans cette
surface ? En faisant une analogie avec la mécanique des fluides, en déduire ce que vaut div E dans le vide.

On en déduit que toutes les propriétés vérifiées par les lignes de courant d’'un écoulement incompressible
(div ¥ = 0) en mécanique des fluides le sont également par les lignes de champ électrostatique dans le vide
(div E = 0).

En particulier, lorsque les lignes de champ électrostatique se resserrent (et donc que le tube de champ
électrostatique s'affine), la norme du champ électrostatique augmente.

Questions de cours

A cocher quand vous savez y répondre par vous-méme...
[ Rappeler la loi de Coulomb. Dans quels cas la force électrostatique est-elle attractive 7 répulsive ?
O

Définir ce que sont un plan de symétrie des charges et un plan d’antisymétrie des charges. Que peut-on
dire du champ électrostatique dans chacun de ces cas?

O

Donner |'expression du théoréeme de Gauss en explicitant chacune des grandeurs ainsi que leurs unités
respectives.

[J Déterminer en tout point de I'espace I'expression du champ électrostatique créé par une boule de
rayon a et de densité volumique de charge py uniforme.

[J Déterminer en tout point de I'espace |'expression du champ électrostatique créé par un plan infini de
densité surfacique de charge o( uniforme.
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Chapitre 2 : Tension électrique et potentiel électrique

&b Objectifs :

— Exprimer une différence de potentiel comme une circulation du champ électrostatique.
— Relier le champ électrostatique au potentiel électrostatique.
— Citer le potentiel créé par une charge ponctuelle.

— Déterminer un champ électrostatique a partir du potentiel et réciproquement, I'expression de |'opérateur
gradient étant fournie.

— Citer des situations que I'on peut modéliser par un condensateur.

— Etablir I'expression de la capacité d’'un condensateur plan dans le vide en négligeant les effets de
bords. Généraliser en présence d'un diélectrique entre les armatures.

— Déterminer la charge d'un condensateur connaissant la tension existant a des bornes et réciproquement.

— Exprimer la densité volumique d'énergie électrostatique dans un condensateur plan a I'aide du champ
électrostatique.

2.1 Circulation du champ électrostatique

Circulation d’'un champ vectoriel

Soit Cx_,y un contour quelconque (c'est-a-dire un chemin d'un point X a un point Y).
On appelle circulation d’un champ vectoriel Z la grandeur :

Cor(B)= [ T-d7

ou d7 représente le vecteur déplacement élémentaire entre deux points infiniment proches
du contour Cx_,y (donc toujours tangent a ce contour).

Dans le cas ou Cx_,y est un contour fermé (on reboucle sur le point de départ, donc
Y = X)) et orienté[} on note alors :

cz£2d7

a. Il faut décider en amont si I’on parcourt le contour dans le sens horaire ou anti-horaire, puisque
rien d’autre ne peut I'indiquer!

B, _,
W Exemple : Le travail Wyup (?) = / F'-d¢ d'une force F' correspond a la circulation C'sap (?) de
A

cette force le long du chemin allant de A a B.

Tension électrique

On appelle tension électrique U4p entre deux points A et B la circulation du champ
électrostatique entre ces deux points :

Uﬁzlfﬁd7

La tension s’exprime en volt V.

18
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Question 1 : Soient trois points de I'espace A, B et C. Montrer que Uap + Upc = Uac.

Prenons I'exemple d'une charge ponctuelle. On représente dans la figure 2.1 deux contours fermés C

Qo —

1 5 €r avec Qo la charge totale de la sphére. On note R; le rayon du
TEQT

chemin a — 3 et Ry celui du chemin v — 4.

et C’, et on rappelle que E =

7
o

FIGURE 2.1 — Lignes de champ électrostatique pour une sphere de charge Qg > 0, et deux contours
fermés C et C'.

Question 2 : Que vaut ﬁ -d ¢ pour le contour C? En déduire la valeur de la circulation de E le long
de ce contour.
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Question 3 : Décomposer le contour fermé C’ en quatre contours ouverts. En déduire la valeur de la
circulation de E' le long de ce contour.

Conservation de la circulation du champ électrostatique

Le long d'un contour fermé C, la circulation du champ électrostatique E est conservée :

iﬁ-d?:o

W Remarque : Cette propriété est loin d'étre triviale : par exemple, le travail des frottements sur un
contour fermé n’est jamais nul, car boucler sur soi-méme ne « compense » pas la perte énergétique.

Question 4 : Soit un circuit fermé ABCDA. Montrer que Uag + Upc + Ucp + Upa = 0.

& Remarque : Nous verrons plus tard que la loi des mailles n'est pas valable en régime non-stationnaire
(ou en tous cas, qu'elle doit étre modifiée pour prendre en compte des phénomeénes d'induction).

2.2 Potentiel électrique

Les calculs précédents ont montré que I'on peut écrire, de maniere générale, la circulation du champ
électrostatique sur un contour ouvert par une différence. En d’autres termes, il existe une fonction
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Theéme 8 : Phénomenes électriques

R3 - R
F telle que :
(x,y,2) = F(z,y,2)

/ABﬁ.d?:F(B)—F(A)

8

Le but de cette partie est notamment de voir si I'on peut exprimer le champ électrostatique E= Y

4
(et non pas sa circulation) en fonction de cette fonction . On notera que les composantes E,, E, et E,
du champ électrostatique dépendent toutes a priori de x, y et z.
Prenons deux points A et B trés proches I'un de I'autre : A a pour coordonnées (z,y,z) et B a pour
dx
coordonnées (z + dx,y + dy, z + dz). On a donc B =dl = |dy
dz

o & &

Question 5 : Exprimer simplement E-dl.

On rappelle par ailleurs que la dérivée d'une fonction f(u) est approchable par le taux d'accroissement

fu+du) = f(u)

f(u) = du lorsque du est infinitésimal. Nécessairement, on a f(u+4du)— f(u) =~ dux f/(u).
Question 6 : Montrer, indépendamment de ['expression précédente de ﬁ . d7, que
oF oF OF
F(B)—FA)=—4d —d — dz.
(B) (4) Ox T oy y+ 0z :
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Question 7 : Déduire des réponses précédentes que I'on peut écrire E en fonction du gradient de F.

Potentiel électrique

On définit le potentiel électrique V' a partir du champ électrique ﬁ :
—
E = —grad V

Le potentiel électrique s’exprime en volt V.

& Remarque : Le potentiel « F' » choisi pour définir ﬁ est donc —V. Ce n'est qu'une convention pour
rester en accord avec ce qui avait été décrit historiquement, et qui permet notamment de donner un lien
simple entre potentiel électrostatique et énergie électrostatique. En particulier, on retiendra que est
orienté des hautes valeurs de potentiel V' vers les basses valeurs de potentiel, a cause de ce signe —.

Généralisation du théoreme fondamental de I’analyse

Soit un chemin quelconque (ouvert ou fermé) de point de départ A et de point d’arrivée B.
La circulation du gradient d'un champ scalaire et sa différentielle sont liés par la relation :

/j&ﬁFd?:F(B)—F(A)

En particulier, le chemin suivi pour aller de A a B n’est pas important : seuls les états
final et initial comptent.
Ce théoreme est une généralisation tridimensionnelle du théoréme fondamental de I'analyse

b
/a F'(z) dz = F(b) — F(a).
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Question 8 : Exprimer alors la tension Uap en fonction de V(A) et V(B). Justifier que I'on mentionne
parfois la tension électrique comme « différence de potentiels ».

& Remarque : Nous verrons plus tard dans I'année que ce n'est pas toujours le cas : la tension électrique
issue de phénomeénes d'induction ne peut pas s'écrire comme une différence de potentiels.

2.3 Condensateur et capacité électrique

2.3.1 Le condensateur plan

Milieu diélectrique

Un milieu est diélectrique s'il ne contient pas de charges électriques susceptibles de se
déplacer de facon macroscopique. Le milieu ne peut donc pas conduire le courant électrique,
et est souvent un isolant électrique. Les milieux diélectriques incluent par exemple le vide,
le verre, le bois sec, I'eau pure et de nombreux plastiques.

On caractérise un milieu diélectrique par sa permittivité diélectrique &, en F - m™".

W Remarque : Dans un milieu diélectrique, les résultats issus du théoréme de Gauss restent valables,
tant que |'on remplace ¢ par ¢.

W Remarque : On calcule souvent la permittivité £ d'un milieu diélectrique a partir de sa permittivité
relative €,, qui n'a pas d'unité. On a ¢ = ¢, X g, avec &, = 1 dans le vide, ¢, = 5 dans le verre, ¢, = 78,5
dans l'eau...

Condensateur plan

Un condensateur plan est un composant électronique constitué de deux plaques paralléles
I'une a I'autre, séparées par un milieu diélectrique. Les deux plaques ont des charges
opposées +(@Q) et —(Q), et sont en influence totale : les lignes de champ électrique de la
premiere plaque atteignent toutes la deuxieme plaque, et inversement.

-Q

=

+Q
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& Remarque : On peut modéliser par un condensateur toute situation ot deux conducteurs sont séparés
par un milieu isolant et peuvent stocker de I'énergie électrique sous forme de champ électrique. Exemples :
deux fils électriques proches I'un de I'autre (capacités parasites), un écran tactile capacitif, ou la présence
du doigt modifie localement la capacité mesurée, le systeme formé par un nuage et le sol, pouvant étre
modélisé de maniére simplifiée par un condensateur avant un éclair...

Afin de simplifier I'étude, on supposera les plaques trés rapprochées : si I'on note e |'épaisseur entre les
deux plaques, et S leur surface, on a donc e? < S. Cette hypothése permet notamment de négliger les
effets de bords, ol le champ électrique, par manque de symétrie, n'est pas rectiligne.

On rappelle que I'expression du champ électrostatique créé par une plaque infinie de densité surfacique
de charge dans le vide o :

o
— . (+u2) au-dessus de la plaque
— 250
Ey =
o
—.(—u2) en dessous de la plaque
260

Question 9 : Faire un schéma représentant en bleu les lignes de champ électrostatique créées par la
plaque —(@, et en rouge les lignes de champ électrostatique créées par la plaque +A.

Question 10 : Montrer que le champ électrostatique en-dehors du condensateur est nul.

Question 11 : Etablir I'expression du champ électrostatique au sein du condensateur en fonction de @,
S et £9. Quelle remarque peut-on faire?
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Question 12 : Exprimer la tension U entre les deux armatures du condensateur en fonction du champ
électrique ﬁ puis en fonction de Q, S, ¢ et e.

Capacité d’'un condensateur

La différence de potentiel (ou tension) U entre les deux armatures d'un condensateur est
proportionnelle a leur charge :

Q=CxU

ou C' est la capacité du condensateur, qui s'exprime en farad F.

Question 13 : Déterminer I'expression de la capacité d'un condensateur plan.

Capacité d’un condensateur plan

Pour un condensateur plan, la capacité peut s'écrire :

o= 55

e

ol S est la surface de chaque armature et e la distance entre celles-ci.

Question 14 : Dans un milieu diélectrique, que devient I'expression de la capacité d'un condensateur ?
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2.3.2 Densité volumique d’énergie électrique

Question 15 : Pour un condensateur plan, montrer que E¢ peut s'écrire Eo = V X u, avec V' le volume
intérieur au condensateur.

Densité volumique d’énergie électrique

Soit un champ électrique E' régnant dans I'espace. On associe a ce champ électrique une
densité volumique u. d'énergie électrique (en J/m?) :

1
Ue = 550E2

L'énergie électrique totale contenue dans |'espace est donc &, = fff uedV .

Questions de cours

A cocher quand vous savez y répondre par vous-méme...

[0 Donner la définition de la tension électrique Usp entre deux points A et B. Aprés avoir rappelé en
quoi consiste la conservation de la circulation du champ électrostatique, en déduire la loi d'additivité
des tensions et la loi des mailles.

[J Donner le lien entre le potentiel électrique V et le champ électrique E Justifier qu'une tension peut
étre vue comme une différence de potentiels.

00 Qu'est-ce qu'un condensateur plan? Etablir I'expression du champ électrostatique en son sein en
négligeant les effets de bord. Aprés avoir rappelé la définition de la capacité d'un condensateur, en
déduire son expression pour le condensateur plan. Quelle est son unité?

[ Donner I'expression de |'énergie emmagasinée par un condensateur. En déduire I'expression de la
densité volumique d'énergie électrique en prenant I'exemple du condensateur plan.
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Chapitre 3 : Conduction électrique

&b Objectifs :

3.1

Interpréter I'intensité du courant électrique comme un débit de charges.

Relier les conventions d’orientation de I'intensité du courant électrique au sens du mouvement des
porteurs de charges.

Relier I'intensité du courant au flux du vecteur densité de courant volumique.

Etablir I'expression du vecteur densité volumique de courant en fonction de la vitesse et de la charge
volumique des porteurs de charge.

Etablir la loi des nceuds en régime stationnaire.

Etablir I'équation locale de conservation de la charge en régime variable pour une situation unidimen-
sionnelle. Enoncer sa généralisation a trois dimensions.

Etablir la loi d’'Ohm a partir de la loi d'Ohm locale dans une situation de conduction unidirectionnelle
et exprimer la résistance électrique du conducteur considéré.

Interpréter I'effet Joule a partir d'un bilan énergétique effectué sur un conducteur ohmique en régime
stationnaire.

Densité volumique de courant

Densité volumique de courant

Soit un déplacement de particules chargées dans I'espace. On note leur densité volumique
n* (nombre de particules par unité de volume, en m~3), ¥ leur vitesse d’ensemble et ¢ la
charge d'une particule.

On définit alors le vecteur densité (volumique) de courant j comme :

j=n*qv

W Remarque : La densité volumique n* et la vitesse d’ensemble ¥ sont des grandeurs mésoscopiques
dépendant de I'espace... comme en mécanique des fluides.

Le sens physique de ; est finalement assez simple. L'étudiant attentif remarquera que n* X ¢, qui

s'exprime en C - m~™

3, ne représente rien d'autre que la densité volumique de charges p. Ainsi, 3 chaque

élément de volume dV/, on associe la charge totale pdV, qui se déplace a la vitesse . ||j|| représente donc
localement I'amplitude du « courant de charges », alors que son sens représente dans quel sens circulent
lesdites charges.

Question 1 : Montrer que le vecteur densité de courant s'exprime en ampeére par métre carré A - m™~.

2
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Intensité du courant

Soit une densité volumique de courant j passant a travers une surface orientée S. On
définit |'intensité ¢ du courant électrique comme le flux de j a travers cette surface :

i= [f Far)-dSu
MeS

En particulier, si la densité de courant est uniforme sur la surface d’intégration, alors :
1=7%x8

L'unité de I'intensité d'un courant est, dans le systéme international, I'ampére A.

W Remarque : Le courant électrique représente par définition le mouvement des charges positives.
Seulement, dans la plupart des circuits électriques, les charges se déplacant, c'est-a-dire les électrons, sont
négatives. Ainsi, lorsqu’on représente un courant allant de la gauche vers la droite, cela signifie en réalité
que les électrons vont de la droite vers la gauche...

3.2 Conservation de la charge

3.2.1 Reésultat préliminaire sur le vecteur densité de courant

Soit un barreau de section S dans lequel circulent des particules de la gauche vers la droite. On
suppose que les particules ont tous la méme vitesse v, et qu'ils sont présents a une densité n* (exprimée en
particules/m3).

On consideére une surface transversale quelconque de ce barreau (représentée en traitillés sur la figure
. On cherche a savoir quel est le nombre de particules traversant cette surface pendant une durée At.

F1GURE 3.1 — Courant de particules dans un barreau vu de profil.

Question 2 : A quelle distance maximale a de la surface les particules entrantes doivent-elles se situer
afin de pouvoir intégrer le systéeme pendant la durée At?
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Question 3 : Exprimer le volume V' contenant les particules pouvant effectivement rentrer, puis le

nombre N, de particules entrantes a I'aide de n*.

Question 4 : On considére a présent que ces particules sont en fait des porteurs de charge ¢. Quelle est
alors la charge totale Q). entrant dans le systéme pendant At?

Question 5 : Rappeler la définition du vecteur densité de courant électrique ; En déduire un lien entre

la charge entrante et le flux de j.

Lien entre charge et courant

Soit une surface ouverte S a travers laquelle passe un courant de charges j. Le flux de j a
travers cette surface ouverte correspond au nombre de charges dq la traversant pendant

une durée dt :
. dq

T

W Remarque : Cette relation, bien connue depuis un certain temps désormais, n'est en fait qu'une
conséquence de la définition de 7 et non pas la définition de I'intensité i. Cependant, on pourrait partir de
cette équation et tout redémontrer a I'envers, comme cela a été fait historiquement. L'ceuf et la poule...
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3.2.2 Aspect local

Soit un conducteur cylindrique de section S et d'axe de révolution (O, z).
On considére comme systeme d'étude une tranche de ce conducteur de longueur infinitésimale dzx.
On note p(z,t) la charge volumique (en C/m?), #(z,t) = v(z,t).€; la vitesse des porteurs de charge et

Jjlx,t) = j(;v,t).e_gc> la densité volumique de courant électrique.

° . °
(]
¢ : . at
° [ ] [ ]
[ ] ° ~
| {
T x +dx
° ~ bt
° [ ]
¢ . At dt
.. [ ]
[ ] ° °
| |
I |
T r +dx

F1GURE 3.2 — Bilan de charge entre x et x + dz.

Question 6 : Exprimer la charge dg. entrant dans le systéme pendant une durée dt. Exprimer de méme
la charge d¢q, sortant du systéme pendant cette méme durée.

Question 7 : Est-il possible de créer ou de supprimer des charges électriques ? En déduire une relation
entre 0q., 0qs et la variation temporelle ¢(t 4+ dt) — q(t) de charges dans le systéme pendant la durée dt.
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Question 8 : La charge totale ¢(t) du systéme peut s'écrire p(x,t) x Sdx, puisque le volume du systéeme
est égal a Sdx. En déduire une équation aux dérivées partielles portant sur p et j.

Question 9 : Comment pourrait-on généraliser |'équation précédente dans un systéme tridimensionnel 7

Equation locale de conservation de la charge

La conservation (c’est-a-dire la non-perte et le non-gain) de la charge électrique dans un
systeme se traduit par I'équation :

%+div]’z0

3.2.3 Conséquences a I’échelle macroscopique

En mécanique des fluides, nous avons montré que I'équation locale de conservation de la masse
ou " . . .
e + div J = 0 pouvait s'écrire, a I'échelle macroscopique :
dM

T :Dm,e_Dms

)

avec M la masse du systéme macroscopique, et Dy, . (respectivement : D,, ;) le débit massique d'entrée
(respectivement : de sortie).
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Question 10 : Etablir des correspondances entre les grandeurs électriques et les grandeurs mécaniques.

En utilisant ces analogies, il vient alors que la différence d'intensité d'un bout a I'autre d'un conducteur
est égal a la dérivée temporelle de la charge intérieure a ce conducteur :

innt
Io—1I,=
dt

Cette équation est I'équation intégrale de conservation de la charge.

Question 11 : En régime stationnaire, que peut-on dire de I, et I, ? Cela est-il cohérent avec I'équation
de conservation de la charge?

Conservation de la charge en régime stationnaire

- : . . , : op
En régime stationnaire, les dépendances en temps sont annulées. Il vient alors que rrie 0,

c'est-a-dire que div j = 0 : le vecteur densité de courant est a flux conservatif.
Du point de vue macroscopique, cela signifie qu'au sein d’'un méme conducteur, l'intensité
entrante totale doit étre égale a I'intensité sortante totale : c'est la loi des nceuds.

3.3 Loi dOhm

3.3.1 Modéle de Drude

Considérons un conducteur dont les électrons peuvent se déplacer en son sein quasi-librement. Par souci
de simplification, on supposera que ce conducteur est cylindrique de section S, et qu'un champ électrique
E met en mouvement les porteurs de charges.

De temps a autres, les électrons vont se heurter a des noyaux qui modifient leurs trajectoires et leurs

. ‘1 . . Me , o 4 , .
vitesses. On modélise cette interaction par une force de frottements f = ———.7, ol ¥ représente la vitesse
T
d'un électron et 7 ~ 1 x 107 s est la durée caractéristique entre deux collision d'un électron sur le réseau

du conducteur.
On notera n* la densité volumique d'électrons et —e < 0 la charge d'un électron.
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Question 12 : Considérons un électron de masse m.. Faire le bilan des forces s'appliquant sur ce
systeme, et appliquer le PFD pour déterminer une équation différentielle portant sur .

Question 13 : Résoudre cette équation différentielle a I'aide d'un vecteur constant arbitraire A que l'on
ne cherchera pas a expliciter. Au vu de la valeur numérique de 7, que peut-on dire de 77

Question 14 : Rappeler la définition du vecteur densité de courant j puis I'exprimer explicitement a

["aide des résultats précédents.

Loi d’Ohm locale

Le vecteur densité de courant j parcourant un conducteur est proportionnel au champ
électrique E en son sein :
j=~.E

~ est la conductivité électrique du milieu, qui est toujours positive et s’exprime en Q=1 .m~!

(ou siemens par métre S- m~1). j et E ont donc méme direction et méme sens.

W Remarque : On peut citer quelques valeurs de conductivités électrique : Yeuivre = 6 X 107 Q1. m™1;

Yrer = 1 X 107" m™; Veau distiliée = 1 X 107207 - m L.
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3.3.2 De I'aspect local a I'aspect global

Considérons un conducteur filiforme de section S et de longueur £; on suppose que la loi d'Ohm locale
s'y applique. Par souci de simplification, le conducteur sera considéré rectiligne, selon un axe (O,x); on a
donc j = j.e; et E = E.e, (voir figure [3.3).

Vi Va

z=0 z =/

FIGURE 3.3 — Conducteur filiforme parcouru par un courant.

Question 15 : Montrer que la tension électrique entre les points x = 0 et & = £ s'écrit U = E x /.

Question 16 : Exprimer |'intensité i parcourant le conducteur en fonction de j. Montrer, a partir de la
loi d'Ohm locale, que I'intensité et la tension U sont proportionnelles.

Loi d’Ohm intégrale

Soit un conducteur de longueur ¢, de section S et de conductivité électrique v possédant
une tension U a ses bornes. L'intensité ¢ du courant électrique s'écoulant entre ces deux
bornes est proportionnelle a U :

U=Rx1

. 4 - s
ol R = "z est la résistance électrique du conducteur.
Y
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Question 17 : Calculer la résistance électrique d'un fil de cuivre de diametre d = 0,45 mm et de

longueur L = 1m.

3.3.3 Effet Joule

Considérons des électrons de charge —e et de vitesse ¥/, plongés dans un champ électrique E. On note
la densité particulaire n*.

Question 18 : Exprimer la puissance P qu'exerce le champ électrique sur un électron en fonction des
données de I'énoncé.

Question 19 : En déduire la puissance par unité de volume p qu'exerce le champ électrique sur les
électrons. Montrer que I'on peut écrire p=j - F.

Puissance volumique cédée a la matiere

Des porteurs de charge en mouvement dans un champ électrique cedent une puissance

volumique p; (en W/m3) proportionnelle au vecteur densité de courant et au champ
électrique :
py=—j-FE
Cette puissance (négative) se transfére a la matiére environnante, généralement sous forme
de chaleur : c'est ce que I'on appelle I'effet Joule.
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72
Question 20 : Montrer que I'on peut écrire p; = —yE? et py = —*.

2 <

Question 21 : On rappelle que i = j x S et U = E x £ avec S la section du conducteur et ¢ sa
longueur. Montrer que I'on retrouve une puissance perdue par effet Joule sous la forme Py = —Ri? pour un
conducteur macroscopique.

Questions de cours

A cocher quand vous savez y répondre par vous-méme...

(] Rappeler la définition de la densité volumique de courant. On explicitera chacun des termes ainsi que
leurs unités. Quel est son lien avec l'intensité du courant?

(] Etablir I'équation locale de conservation de la charge unidimensionnelle. La généraliser a trois
dimensions.

[0 Enoncer la loi d'Ohm locale, en explicitant chacun des termes ainsi que leurs unités respectives.
Donner I'ordre de grandeur de conductivité électrique dans un métal.

O A partir de la loi d'Ohm locale, démontrer la loi d’Ohm intégrale U = R x i. Donner |'expression de
R en fonction de la conductivité électrique, de la section du conducteur (supposée uniforme) et de sa
longueur.

[J Donner |'expression de la puissance volumique cédée par des porteurs de charge a la matiere environ-
nante. Sous quelle forme I'énergie est-elle échangée ? Commenter le signe.
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