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Thème 8 : Phénomènes électriques
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Figure 1 – Ingénieur et physicien français, Charles-Augustin de Coulomb (1736–1806) établit la loi
fondamentale de l’électrostatique, qui décrit la force entre deux charges ponctuelles. Il utilise une
balance de torsion pour confirmer expérimentalement que cette force décroît en 1/r2. Ses travaux
posent les bases du concept de champ électrique. L’unité de charge électrique (C) porte son nom.
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Figure 2 – Mathématicien allemand, Carl Friedrich Gauss (1777–1855) applique ses travaux en analyse
au calcul du champ électrique. Il énonce le théorème de Gauss, qui relie le flux du champ électrique
à la charge totale enfermée. Ce résultat fondamental permet de calculer des champs électrostatiques
dans des situations symétriques avec une grande élégance.
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Chapitre 1 : Des charges électriques au champ électrique

j Objectifs :

— Exprimer le champ électrostatique créé par une charge ponctuelle.
— Citer quelques ordres de grandeurs de champs électriques.
— Exploiter une carte de lignes de champ électrostatique fournie.
— Choisir une modélisation adaptée à la géométrie du problème étudié.
— Identifier des situations où la distribution de charge peut être modélisée par une distribution infinie.
— Évaluer la charge totale d’une distribution continue et uniforme dans des situations de géométrie

simple.
— Identifier les plans de symétrie et d’antisymétrie éventuels d’une distribution de charges. Identifier les

invariances d’une distribution de charges. Exploiter ces symétries et invariances pour caractériser le
champ électrique créé et prévoir la topographie des lignes de champ.

— Déterminer le flux du champ électrostatique dans des géométries simples.
— Énoncer le théorème de Gauss. Exploiter le théorème de Gauss pour calculer un champ électrostatique

créé par une distribution présentant un haut degré de symétrie (distribution à symétrie sphérique,
plan uniformément chargé).

— Exploiter qualitativement la topographie des lignes de champ électrostatiques dans le vide pour prévoir
les variations de la norme du champ le long des tubes de champ.

1.1 Définition du champ électrostatique

1.1.1 Charges
D’un point de vue mésoscopique et macroscopique, les répartitions de charges ne sont pas forcément

ponctuelles. Elles peuvent être linéaires (fil chargé), surfaciques (plan chargé) ou volumiques (espace chargé)
(voir figure 1.1). On définit alors :

• La charge linéique λ, telle que la charge infinitésimale dQ d’un fil de longueur infinitésimale dℓ
vaille : dQ = λ dℓ (et alors Q =

∫
fil λdℓ) ;

• La charge surfacique σ, telle que la charge infinitésimale dQ d’un plan de surface infinitésimale dS
vaille : dQ = σ dS (et alors Q =

s
surface σdS ;

• La charge volumique ρ, telle que la charge infinitésimale dQ d’un espace de volume infinitésimal dV
vaille : dQ = ρ dV (et alors Q =

∫
espace ρdV .

Figure 1.1 – De l’aspect microscopique et quantifié à l’aspect mésoscopique et continu pour une
densité linéique de charges.
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Question 1 : Quelles sont les unités de λ, σ et ρ ?

Question 2 : Calculer la charge totale Q d’un fil de longueur L et de densité linéique de charge λ0
uniforme.

Question 3 : Calculer la charge totale Q d’une sphère de rayon R et de densité volumique de charge ρ0
uniforme.

1.1.2 Champ et force électrostatiques

Loi de Coulomb

Soit deux charges ponctuelles q1 et q2 séparées d’une distance d. La loi de Coulomb
énonce que les deux charges exercent l’une sur l’autre une force électrostatique attractive
ou répulsive telle que : −−−→

F e
1→2 = q1 q2

4πε0 d2 .−−→e1→2

où ε0 = 8,85 × 10−12 F · m−1 est la permittivité diélectrique du vide et −−→e1→2 est le
vecteur unitaire allant de q1 vers q2.

¬ Remarque : Cette force a une expression très similaire à celle établie par la loi de gravitation universelle−−−→
F g

1→2 = −G m1m2
d2 .−−→e1→2.

Question 4 : Faire un schéma de la situation. Dans quels cas la force électrostatique est-elle attractive ?
répulsive ?
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Force électrostatique, champ électrostatique

On définit le champ électrostatique E⃗ d’une distribution de charges à partir de la force−→
Fe ressentie par une charge ponctuelle d’essai q dans ce champ :

−→
Fe = q.E⃗

Le champ électrostatique s’exprimer en volt par mètre V · m−1.

¬ Remarque : On aperçoit à nouveau une analogie avec le champ de pesanteur, où P⃗ = m.⃗g.

Question 5 : Une charge ponctuelle positive ira-t-elle dans le même sens ou dans le sens opposé du
champ E⃗ ? Et pour une charge négative ?

Question 6 : Exprimer le champ électrostatique −→
E0 d’une charge ponctuelle q0.

Théorème de superposition

Si deux champs électrostatiques −→
E1 et −→

E2 coexistent en un point M , alors le champ
électrostatique total en ce même point M vaut −→

E = −→
E1 + −→

E2. C’est le théorème de
superposition.

1.2 Symétries du champ électrostatique et invariances

1.2.1 Symétries du champ électrostatique

Plans de symétrie et d’antisymétrie des charges

On dit qu’un plan Π est un plan de symétrie des charges si, lorsqu’une charge existe d’un
côté de ce plan, alors une charge de même signe et de même valeur existe de l’autre
côté de ce plan, symétriquement à la première charge.
On dit qu’un plan Π est un plan d’antisymétrie des charges si, lorsqu’une charge existe
d’un côté de ce plan, alors une charge de signe opposé et de même valeur absolue
existe de l’autre côté de ce plan, symétriquement à la première charge.
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Question 7 : Lister les plans de symétrie pour une sphère uniformément chargée en volume.

Question 8 : Lister les plans de symétrie pour un plan infini uniformément chargé en surface.

Question 9 : Peut-il exister un plan d’antisymétrie pour une unique charge ?

On représente en figure 1.2 les lignes de champ électrostatique lorsque deux charges ponctuelles sont à
proximité.

Figure 1.2 – Lignes de champ électrostatique pour un système à deux charges. Gauche : les deux
charges sont de même signe et de même valeur ; droite : les deux charges sont de signes opposés et de
même valeur absolue. Par http ://commons.wikimedia.org/wiki/User :Chanchocan — Travail personnel,
CC BY-SA 3.0, https ://commons.wikimedia.org/w/index.php ?curid=951213
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Question 10 : Que peut-on dire du champ électrostatique pour les plans de symétrie ?

Question 11 : Que peut-on dire du champ électrostatique pour les plans d’antisymétrie ?

Direction du champ électrostatique selon la symétrie des charges

Soit un point M appartenant à un plan de symétrie Πs des charges. Le champ électrosta-
tique −→

E (M) est alors contenu dans ce plan : −→
E (M) ∈ Πs.

Soit un point M appartenant à un plan d’antisymétrie Πa des charges. Le champ électro-
statique −→

E (M) est alors orthogonal à ce plan : −→
E (M) ⊥ Πa.

1.2.2 Invariances
Soit une répartition de charges continue ou discrète dans l’espace repéré par trois coordonnées. Selon le

degré de symétries du problème, on va préférer différents types de coordonnées. Dans l’ordre :

1. Si la répartition présente un centre de symétrie, on utilisera les coordonnées sphériques ;
2. Si la répartition présente un axe de symétrie, on utilisera les coordonnées cylindriques ;
3. Si la répartition présente un plan de symétrie, on utilisera les coordonnées cartésiennes.

Invariances en symétrie centrale

Prenons l’exemple d’une sphère chargée en volume, pas forcément de manière uniforme mais telle que le
centre O de la sphère soit un centre de symétrie des répartitions de charges (voir figure 1.3).

+O

Figure 1.3 – Répartition de charges à symétrie centrale.

En coordonnées sphériques, on peut repérer un point M par :
— La distance r entre le point M et le centre O ;
— La colatitude θ du point M ;
— La longitude φ du point M .
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La densité volumique de charges s’écrit donc ρ(r, θ, φ) ; a priori, la norme du champ électrostatique créé
s’écrit donc également E(r, θ, φ).

Question 12 : Pour un problème à symétrie centrale, de quelles variables dépend réellement ρ ? Expliquer
alors de quelles variables dépend la norme du champ électrostatique E.

Invariances en symétrie centrale

Si la répartition de charges présente une symétrie centrale ρ(r) (on dit qu’il y a invariance
selon les coordonnées θ et φ), alors la norme du champ électrostatique ne peut dépendre
que de r : E = E(r).

¬ Remarque : Le raisonnement est similaire pour une répartition surfacique de charges σ.

Invariances en symétrie axiale

Prenons l’exemple d’un cylindre chargé en volume, pas forcément de manière uniforme mais telle que
l’axe de révolution (O, z) du cylindre soit un axe de symétrie des répartitions de charges (voir figure 1.4).

(O, z)

Figure 1.4 – Répartition de charges à symétrie axiale.

En coordonnées cylindriques, on peut repérer un point M par :
— La distance r entre le point M et l’axe (O, z) ;
— L’angle polaire θ du point M ;
— La cote z du point M .

La densité volumique de charges s’écrit donc ρ(r, θ, z) ; a priori, la norme du champ électrostatique créé
s’écrit donc également E(r, θ, z).

Question 13 : Pour un problème à symétrie axiale, de quelles variables dépend réellement ρ ? Expliquer
alors de quelles variables dépend la norme du champ électrostatique E.
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Question 14 : Si le fil est infini et uniformément chargé selon la direction z, que peut-on alors dire de
ρ ? de E ?

Invariances en symétrie axiale

Si la répartition de charges présente une symétrie axiale ρ(r, z) (on dit qu’il y a invariance
selon θ), alors la norme du champ électrostatique ne peut dépendre que de r et z :
E = E(r, z).
Si la répartition de charges présente en plus une uniformité ρ(r) selon l’axe de révolution
(invariance selon z), alors le champ électrostatique ne peut dépendre que de r : E = E(r).

¬ Remarque : Le raisonnement est similaire pour une répartition surfacique de charges σ ou une
répartition linéique de charges λ.

Invariances en symétrie plane

Prenons l’exemple d’un plan infini chargé en volume, pas forcément de manière uniforme mais telle que
tout plan orthogonal au plan infini soit un plan de symétrie des répartitions de charges (voir figure 1.5).

(O, x)

(O, y)

(O, z)

.

Figure 1.5 – Répartition de charges à symétrie plane.

En coordonnées cartésiennes, on peut repérer un point M par :
— L’abscisse x ;
— L’ordonnée y ;
— La cote z.

La densité surfacique de charges s’écrit donc ρ(x, y, z) ; a priori, la norme du champ électrostatique créé
s’écrit donc également E(x, y, z).
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Question 15 : Pour un problème à symétrie plane, de quelle variable dépend réellement ρ ? Expliquer
alors de quelles variables dépend la norme du champ électrostatique E.

Invariances en symétrie plane

Si la répartition de charges est plane et uniforme (invariances selon x et y), alors la norme
du champ électrostatique ne peut dépendre que de z : E = E(z).

¬ Remarque : Le raisonnement est similaire pour une répartition surfacique de charges σ...

1.3 Théorème de Gauss

1.3.1 Énoncé et interprétation

Théorème de Gauss

Le théorème de Gauss dit que le flux du champ électrostatique −→
E à travers une surface

fermée S orientée vers l’extérieur est proportionnelle à la charge électrique contenue dans
cette surface : {

M∈S

−→
E (M) · d

−−−−−→
S(M)ext = Qint

ε0

L’interprétation du théorème de Gauss est simple :

• Toute charge Q positive crée un champ électrique fuyant en ligne droite ladite charge. Ainsi, si l’on
prend une surface S fermée englobant cette charge, on pourra compter toutes les lignes de champ
électrostatique fuyant Q en calculant son flux à travers la surface S ;

• Par ailleurs, la norme du champ électrostatique est d’autant plus importante que la charge Q est
grande ;

• Ainsi, le flux du champ électrostatique est proportionnel à la charge électrique intérieure : c’est le
théorème de Gauss.

Figure 1.6 – Illustration du théorème de Gauss. À gauche, la charge intérieure à la surface de Gauss
est positive, tout comme le flux (comptabilisé positivement vers l’extérieur) du champ électrostatique.
À droite, la charge intérieure est nulle, tout comme le flux du champ électrostatique (les entrées
compensent les sorties). Image extraite de https://byjus.com/jee/gauss-law/.
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Pour une charge négative, on a E⃗ qui est orienté vers l’intérieur, donc −→
E (M) · d

−−−−−→
S(M)ext < 0, ce qui

est cohérent avec le théorème de Gauss.

L’utilité principale du théorème de Gauss est de pouvoir exprimer le champ électrostatique −→
E (M) en

tout point M , si suffisamment de symétries permettent de simplifier le problème. Pour cela :

1. On choisit un point M dans l’espace, et on identifie les plans de symétrie et/ou d’antisymétrie passant
par ce point : on en déduit la direction du champ −→

E (M), ce qui permet d’écrire −→
E (M) = E(M).u⃗

avec u⃗ un vecteur unitaire ;
2. On recense les invariances dues aux répartitions des charges : on en déduit les variables effectives de

E(M) ;

3. On choisit une surface de Gauss passant par le point M sur laquelle le champ −→
E est uniforme :

l’expression du flux du champ électrostatique se simplifie ;
4. On calcule la charge intérieure à la surface de Gauss, généralement via une intégration : Qint =

∫
λ dℓ

ou Qint =
s

σ dS ou Qint =
t

ρ dV ;

5. On applique le théorème de Gauss pour déterminer E(M), puis −→
E (M).

1.3.2 Applications

Champ créé par une boule chargée uniformément en volume

Soit une boule de rayon R, de densité volumique de charge uniforme ρ0. On note Q0 =
y

boule
ρ0 dV la

charge totale de la sphère.
On fixe un point M quelconque dans l’espace à l’extérieur de la sphère.

Question 16 : Faire un schéma du problème. Quels plans passant par M sont de symétrie par rapport
aux charges ? En déduire la direction du champ électrostatique en M .

Question 17 : Quelles invariances observe-t-on ? En déduire les variables de la norme du champ
électrostatique E.
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¬ Remarque : Ici, −→
E = E(r).−→ur. À l’oral, on dira que −→

E dépend de r, et que −→
E est dirigé selon −→ur.

Question 18 : Quelle surface de Gauss va-t-on choisir ici ? Justifier.

Question 19 : En déduire une expression simplifiée du flux électrostatique.

Question 20 : Que vaut Qint ? En déduire l’expression de E puis de −→
E .
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On prend à présent un point M dans la boule : 0 ≤ r ≤ R.

Question 21 : Faire un nouveau schéma.

Question 22 : L’expression du flux électrostatique est-elle modifiée ? Quelle est la différence avec le
problème précédent ?

Question 23 : Calculer la charge intérieure à la surface de Gauss. On indiquera clairement l’objet sur
lequel on intègre. En déduire, par application du théorème de Gauss, l’expression du champ électrostatique.

ATS – Lycée Louis Armand 14 A. Diet



Thème 8 : Phénomènes électriques

Champ créé par un plan infini chargé uniformément en surface

Soit un plan infini d’équation z = 0 et de densité surfacique de charge uniforme σ0.
On fixe un point M quelconque dans l’espace à l’extérieur du plan.

Question 24 : Faire un schéma du problème. Quels plans passant par M sont de symétrie par rapport
aux charges ? En déduire la direction du champ électrostatique en M .

Question 25 : Quelles invariances observe-t-on ? En déduire les variables de la norme du champ
électrostatique E.

Question 26 : Que peut-on dire de −→
E (z) et −→

E (−z) ? En déduire un lien entre E(z) et E(−z), où
E(z) = −→

E (z) · −→ez .
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Question 27 : Montrer qu’un cylindre de hauteur 2z est une surface de Gauss convenable. Simplifier
l’expression du flux électrostatique en divisant la surface en trois secteurs.

Question 28 : Que vaut Qint ? En déduire l’expression de E puis de −→
E .

1.3.3 Conservation du champ électrostatique
Considérons une distribution quelconque de charges ; on trace les lignes de champ électrostatique

associées.

Figure 1.7 – Lignes de champ électrostatique d’une distribution de charge. Source : techno-science.net
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Question 29 : On choisit une surface fermée quelconque ne contenant aucune charge. Que peut-on
dire du flux ΦE du champ électrostatique ?

Question 30 : Que peut-on en déduire sur les « entrées et sorties » du champ électrostatique dans cette
surface ? En faisant une analogie avec la mécanique des fluides, en déduire ce que vaut div E⃗ dans le vide.

On en déduit que toutes les propriétés vérifiées par les lignes de courant d’un écoulement incompressible
(div v⃗ = 0) en mécanique des fluides le sont également par les lignes de champ électrostatique dans le vide
(div E⃗ = 0).

En particulier, lorsque les lignes de champ électrostatique se resserrent (et donc que le tube de champ
électrostatique s’affine), la norme du champ électrostatique augmente.

Questions de cours

À cocher quand vous savez y répondre par vous-même...

□ Rappeler la loi de Coulomb. Dans quels cas la force électrostatique est-elle attractive ? répulsive ?
□ Définir ce que sont un plan de symétrie des charges et un plan d’antisymétrie des charges. Que peut-on

dire du champ électrostatique dans chacun de ces cas ?
□ Donner l’expression du théorème de Gauss en explicitant chacune des grandeurs ainsi que leurs unités

respectives.
□ Déterminer en tout point de l’espace l’expression du champ électrostatique créé par une boule de

rayon a et de densité volumique de charge ρ0 uniforme.
□ Déterminer en tout point de l’espace l’expression du champ électrostatique créé par un plan infini de

densité surfacique de charge σ0 uniforme.
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Chapitre 2 : Tension électrique et potentiel électrique

j Objectifs :

— Exprimer une différence de potentiel comme une circulation du champ électrostatique.
— Relier le champ électrostatique au potentiel électrostatique.
— Citer le potentiel créé par une charge ponctuelle.
— Déterminer un champ électrostatique à partir du potentiel et réciproquement, l’expression de l’opérateur

gradient étant fournie.
— Citer des situations que l’on peut modéliser par un condensateur.
— Établir l’expression de la capacité d’un condensateur plan dans le vide en négligeant les effets de

bords. Généraliser en présence d’un diélectrique entre les armatures.
— Déterminer la charge d’un condensateur connaissant la tension existant à des bornes et réciproquement.
— Exprimer la densité volumique d’énergie électrostatique dans un condensateur plan à l’aide du champ

électrostatique.

2.1 Circulation du champ électrostatique

Circulation d’un champ vectoriel

Soit CX→Y un contour quelconque (c’est-à-dire un chemin d’un point X à un point Y ).
On appelle circulation d’un champ vectoriel −→

A la grandeur :

CXY

(−→
A

)
=

∫
CX→Y

−→
A · d

−→
ℓ

où d
−→
ℓ représente le vecteur déplacement élémentaire entre deux points infiniment proches

du contour CX→Y (donc toujours tangent à ce contour).
Dans le cas où CX→Y est un contour fermé (on reboucle sur le point de départ, donc
Y = X) et orienté a, on note alors :

C =
∮

C

−→
A · d

−→
ℓ

a. Il faut décider en amont si l’on parcourt le contour dans le sens horaire ou anti-horaire, puisque
rien d’autre ne peut l’indiquer !

¬ Exemple : Le travail WAB

(−→
F

)
=

∫ B

A
F⃗ · dℓ⃗ d’une force F⃗ correspond à la circulation CAB

(−→
F

)
de

cette force le long du chemin allant de A à B.

Tension électrique

On appelle tension électrique UAB entre deux points A et B la circulation du champ
électrostatique entre ces deux points :

UAB =
∫ B

A

−→
E · d

−→
ℓ

La tension s’exprime en volt V.
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Question 1 : Soient trois points de l’espace A, B et C. Montrer que UAB + UBC = UAC .

Prenons l’exemple d’une charge ponctuelle. On représente dans la figure 2.1 deux contours fermés C
et C′, et on rappelle que −→

E = Q0
4πε0r2

−→er avec Q0 la charge totale de la sphère. On note R1 le rayon du
chemin α → β et R2 celui du chemin γ → δ.

α

β

γ

δ

C′

C

Figure 2.1 – Lignes de champ électrostatique pour une sphère de charge Q0 > 0, et deux contours
fermés C et C′.

Question 2 : Que vaut −→
E · d

−→
ℓ pour le contour C ? En déduire la valeur de la circulation de −→

E le long
de ce contour.
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Question 3 : Décomposer le contour fermé C′ en quatre contours ouverts. En déduire la valeur de la
circulation de −→

E le long de ce contour.

Conservation de la circulation du champ électrostatique

Le long d’un contour fermé C, la circulation du champ électrostatique −→
E est conservée :∮

C

−→
E · d

−→
ℓ = 0

¬ Remarque : Cette propriété est loin d’être triviale : par exemple, le travail des frottements sur un
contour fermé n’est jamais nul, car boucler sur soi-même ne « compense » pas la perte énergétique.

Question 4 : Soit un circuit fermé ABCDA. Montrer que UAB + UBC + UCD + UDA = 0.

¬ Remarque : Nous verrons plus tard que la loi des mailles n’est pas valable en régime non-stationnaire
(ou en tous cas, qu’elle doit être modifiée pour prendre en compte des phénomènes d’induction).

2.2 Potentiel électrique
Les calculs précédents ont montré que l’on peut écrire, de manière générale, la circulation du champ

électrostatique sur un contour ouvert par une différence. En d’autres termes, il existe une fonction
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F :
{
R3 → R
(x, y, z) 7→ F (x, y, z)

telle que :

∫ B

A

−→
E · d

−→
ℓ = F (B) − F (A)

Le but de cette partie est notamment de voir si l’on peut exprimer le champ électrostatique E⃗ =

Ex

Ey

Ez


(et non pas sa circulation) en fonction de cette fonction F . On notera que les composantes Ex, Ey et Ez

du champ électrostatique dépendent toutes a priori de x, y et z.
Prenons deux points A et B très proches l’un de l’autre : A a pour coordonnées (x, y, z) et B a pour

coordonnées (x + dx, y + dy, z + dz). On a donc −−→
AB = dℓ⃗ =

dx
dy
dz

.

Question 5 : Exprimer simplement E⃗ · dℓ⃗.

On rappelle par ailleurs que la dérivée d’une fonction f(u) est approchable par le taux d’accroissement

f ′(u) ≈ f(u + du) − f(u)
du

lorsque du est infinitésimal. Nécessairement, on a f(u+du)−f(u) ≈ du×f ′(u).

Question 6 : Montrer, indépendamment de l’expression précédente de −→
E · d

−→
ℓ , que

F (B) − F (A) = ∂F

∂x
dx + ∂F

∂y
dy + ∂F

∂z
dz.
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Question 7 : Déduire des réponses précédentes que l’on peut écrire −→
E en fonction du gradient de F .

Potentiel électrique

On définit le potentiel électrique V à partir du champ électrique −→
E :

−→
E = −

−−→
grad V

Le potentiel électrique s’exprime en volt V.

¬ Remarque : Le potentiel « F » choisi pour définir −→
E est donc −V . Ce n’est qu’une convention pour

rester en accord avec ce qui avait été décrit historiquement, et qui permet notamment de donner un lien
simple entre potentiel électrostatique et énergie électrostatique. En particulier, on retiendra que −→

E est
orienté des hautes valeurs de potentiel V vers les basses valeurs de potentiel, à cause de ce signe −.

Généralisation du théorème fondamental de l’analyse

Soit un chemin quelconque (ouvert ou fermé) de point de départ A et de point d’arrivée B.
La circulation du gradient d’un champ scalaire et sa différentielle sont liés par la relation :∫ B

A

−−→
grad F · d

−→
ℓ = F (B) − F (A)

En particulier, le chemin suivi pour aller de A à B n’est pas important : seuls les états
final et initial comptent.
Ce théorème est une généralisation tridimensionnelle du théorème fondamental de l’analyse∫ b

a
F ′(x) dx = F (b) − F (a).

ATS – Lycée Louis Armand 22 A. Diet



Thème 8 : Phénomènes électriques

Question 8 : Exprimer alors la tension UAB en fonction de V (A) et V (B). Justifier que l’on mentionne
parfois la tension électrique comme « différence de potentiels ».

¬ Remarque : Nous verrons plus tard dans l’année que ce n’est pas toujours le cas : la tension électrique
issue de phénomènes d’induction ne peut pas s’écrire comme une différence de potentiels.

2.3 Condensateur et capacité électrique

2.3.1 Le condensateur plan

Milieu diélectrique

Un milieu est diélectrique s’il ne contient pas de charges électriques susceptibles de se
déplacer de façon macroscopique. Le milieu ne peut donc pas conduire le courant électrique,
et est souvent un isolant électrique. Les milieux diélectriques incluent par exemple le vide,
le verre, le bois sec, l’eau pure et de nombreux plastiques.
On caractérise un milieu diélectrique par sa permittivité diélectrique ε, en F · m−1.

¬ Remarque : Dans un milieu diélectrique, les résultats issus du théorème de Gauss restent valables,
tant que l’on remplace ε0 par ε.

¬ Remarque : On calcule souvent la permittivité ε d’un milieu diélectrique à partir de sa permittivité
relative εr, qui n’a pas d’unité. On a ε = εr × ε0, avec εr = 1 dans le vide, εr = 5 dans le verre, εr = 78,5
dans l’eau...

Condensateur plan

Un condensateur plan est un composant électronique constitué de deux plaques parallèles
l’une à l’autre, séparées par un milieu diélectrique. Les deux plaques ont des charges
opposées +Q et −Q, et sont en influence totale : les lignes de champ électrique de la
première plaque atteignent toutes la deuxième plaque, et inversement.

E⃗

−Q

+Q
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¬ Remarque : On peut modéliser par un condensateur toute situation où deux conducteurs sont séparés
par un milieu isolant et peuvent stocker de l’énergie électrique sous forme de champ électrique. Exemples :
deux fils électriques proches l’un de l’autre (capacités parasites), un écran tactile capacitif, où la présence
du doigt modifie localement la capacité mesurée, le système formé par un nuage et le sol, pouvant être
modélisé de manière simplifiée par un condensateur avant un éclair...

Afin de simplifier l’étude, on supposera les plaques très rapprochées : si l’on note e l’épaisseur entre les
deux plaques, et S leur surface, on a donc e2 ≪ S. Cette hypothèse permet notamment de négliger les
effets de bords, où le champ électrique, par manque de symétrie, n’est pas rectiligne.

On rappelle que l’expression du champ électrostatique créé par une plaque infinie de densité surfacique
de charge dans le vide σ :

−→
E0 =


σ

2ε0
. (+−→uz) au-dessus de la plaque

σ

2ε0
. (−−→uz) en dessous de la plaque

Question 9 : Faire un schéma représentant en bleu les lignes de champ électrostatique créées par la
plaque −Q, et en rouge les lignes de champ électrostatique créées par la plaque +A.

Question 10 : Montrer que le champ électrostatique en-dehors du condensateur est nul.

Question 11 : Établir l’expression du champ électrostatique au sein du condensateur en fonction de Q,
S et ε0. Quelle remarque peut-on faire ?
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Question 12 : Exprimer la tension U entre les deux armatures du condensateur en fonction du champ
électrique −→

E , puis en fonction de Q, S, ε0 et e.

Capacité d’un condensateur

La différence de potentiel (ou tension) U entre les deux armatures d’un condensateur est
proportionnelle à leur charge :

Q = C × U

où C est la capacité du condensateur, qui s’exprime en farad F.

Question 13 : Déterminer l’expression de la capacité d’un condensateur plan.

Capacité d’un condensateur plan

Pour un condensateur plan, la capacité peut s’écrire :

C = ε0S

e

où S est la surface de chaque armature et e la distance entre celles-ci.

Question 14 : Dans un milieu diélectrique, que devient l’expression de la capacité d’un condensateur ?
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2.3.2 Densité volumique d’énergie électrique
Question 15 : Pour un condensateur plan, montrer que EC peut s’écrire EC = V × ue avec V le volume

intérieur au condensateur.

Densité volumique d’énergie électrique

Soit un champ électrique E⃗ régnant dans l’espace. On associe à ce champ électrique une
densité volumique ue d’énergie électrique (en J/m3) :

ue = 1
2ε0E2

L’énergie électrique totale contenue dans l’espace est donc Ee =
y

uedV .

Questions de cours

À cocher quand vous savez y répondre par vous-même...

□ Donner la définition de la tension électrique UAB entre deux points A et B. Après avoir rappelé en
quoi consiste la conservation de la circulation du champ électrostatique, en déduire la loi d’additivité
des tensions et la loi des mailles.

□ Donner le lien entre le potentiel électrique V et le champ électrique −→
E . Justifier qu’une tension peut

être vue comme une différence de potentiels.
□ Qu’est-ce qu’un condensateur plan ? Établir l’expression du champ électrostatique en son sein en

négligeant les effets de bord. Après avoir rappelé la définition de la capacité d’un condensateur, en
déduire son expression pour le condensateur plan. Quelle est son unité ?

□ Donner l’expression de l’énergie emmagasinée par un condensateur. En déduire l’expression de la
densité volumique d’énergie électrique en prenant l’exemple du condensateur plan.
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Chapitre 3 : Conduction électrique

j Objectifs :

— Interpréter l’intensité du courant électrique comme un débit de charges.
— Relier les conventions d’orientation de l’intensité du courant électrique au sens du mouvement des

porteurs de charges.
— Relier l’intensité du courant au flux du vecteur densité de courant volumique.
— Établir l’expression du vecteur densité volumique de courant en fonction de la vitesse et de la charge

volumique des porteurs de charge.
— Établir la loi des nœuds en régime stationnaire.
— Établir l’équation locale de conservation de la charge en régime variable pour une situation unidimen-

sionnelle. Énoncer sa généralisation à trois dimensions.
— Établir la loi d’Ohm à partir de la loi d’Ohm locale dans une situation de conduction unidirectionnelle

et exprimer la résistance électrique du conducteur considéré.
— Interpréter l’effet Joule à partir d’un bilan énergétique effectué sur un conducteur ohmique en régime

stationnaire.

3.1 Densité volumique de courant

Densité volumique de courant

Soit un déplacement de particules chargées dans l’espace. On note leur densité volumique
n∗ (nombre de particules par unité de volume, en m−3), v⃗ leur vitesse d’ensemble et q la
charge d’une particule.
On définit alors le vecteur densité (volumique) de courant j⃗ comme :

j⃗ = n∗q.v⃗

¬ Remarque : La densité volumique n∗ et la vitesse d’ensemble v⃗ sont des grandeurs mésoscopiques
dépendant de l’espace... comme en mécanique des fluides.

Le sens physique de j⃗ est finalement assez simple. L’étudiant attentif remarquera que n∗ × q, qui
s’exprime en C · m−3, ne représente rien d’autre que la densité volumique de charges ρ. Ainsi, à chaque
élément de volume dV , on associe la charge totale ρdV , qui se déplace à la vitesse v⃗. ||⃗j|| représente donc
localement l’amplitude du « courant de charges », alors que son sens représente dans quel sens circulent
lesdites charges.

Question 1 : Montrer que le vecteur densité de courant s’exprime en ampère par mètre carré A · m−2.
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Intensité du courant

Soit une densité volumique de courant j⃗ passant à travers une surface orientée S. On
définit l’intensité i du courant électrique comme le flux de j⃗ à travers cette surface :

i =
x

M∈S
j⃗(M) · d−→

SM

En particulier, si la densité de courant est uniforme sur la surface d’intégration, alors :

i = j × S

L’unité de l’intensité d’un courant est, dans le système international, l’ampère A.

¬ Remarque : Le courant électrique représente par définition le mouvement des charges positives.
Seulement, dans la plupart des circuits électriques, les charges se déplaçant, c’est-à-dire les électrons, sont
négatives. Ainsi, lorsqu’on représente un courant allant de la gauche vers la droite, cela signifie en réalité
que les électrons vont de la droite vers la gauche...

3.2 Conservation de la charge

3.2.1 Résultat préliminaire sur le vecteur densité de courant
Soit un barreau de section S dans lequel circulent des particules de la gauche vers la droite. On

suppose que les particules ont tous la même vitesse v, et qu’ils sont présents à une densité n∗ (exprimée en
particules/m3).

On considère une surface transversale quelconque de ce barreau (représentée en traitillés sur la figure
3.1). On cherche à savoir quel est le nombre de particules traversant cette surface pendant une durée ∆t.

•
••

•

•
•

•

•

•
•

• ••

Figure 3.1 – Courant de particules dans un barreau vu de profil.

Question 2 : À quelle distance maximale a de la surface les particules entrantes doivent-elles se situer
afin de pouvoir intégrer le système pendant la durée ∆t ?
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Question 3 : Exprimer le volume V contenant les particules pouvant effectivement rentrer, puis le
nombre Ne de particules entrantes à l’aide de n∗.

Question 4 : On considère à présent que ces particules sont en fait des porteurs de charge q. Quelle est
alors la charge totale Qe entrant dans le système pendant ∆t ?

Question 5 : Rappeler la définition du vecteur densité de courant électrique j⃗. En déduire un lien entre
la charge entrante et le flux de j⃗.

Lien entre charge et courant

Soit une surface ouverte S à travers laquelle passe un courant de charges j⃗. Le flux de j⃗ à
travers cette surface ouverte correspond au nombre de charges dq la traversant pendant
une durée dt :

i = dq

dt

¬ Remarque : Cette relation, bien connue depuis un certain temps désormais, n’est en fait qu’une
conséquence de la définition de j⃗ et non pas la définition de l’intensité i. Cependant, on pourrait partir de
cette équation et tout redémontrer à l’envers, comme cela a été fait historiquement. L’œuf et la poule...
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3.2.2 Aspect local
Soit un conducteur cylindrique de section S et d’axe de révolution (O, x).
On considère comme système d’étude une tranche de ce conducteur de longueur infinitésimale dx.

On note ρ(x, t) la charge volumique (en C/m3), v⃗(x, t) = v(x, t).−→ex la vitesse des porteurs de charge et
j⃗(x, t) = j(x, t).−→ex la densité volumique de courant électrique.

•
••

•

•
•

•

•

•
•

• ••

|
x

|
x + dx

à t

•
••

•

•
•

•

•

•
•

• ••

|
x

|
x + dx

à t + dt

Figure 3.2 – Bilan de charge entre x et x + dx.

Question 6 : Exprimer la charge δqe entrant dans le système pendant une durée dt. Exprimer de même
la charge δqs sortant du système pendant cette même durée.

Question 7 : Est-il possible de créer ou de supprimer des charges électriques ? En déduire une relation
entre δqe, δqs et la variation temporelle q(t + dt) − q(t) de charges dans le système pendant la durée dt.
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Question 8 : La charge totale q(t) du système peut s’écrire ρ(x, t)×Sdx, puisque le volume du système
est égal à Sdx. En déduire une équation aux dérivées partielles portant sur ρ et j.

Question 9 : Comment pourrait-on généraliser l’équation précédente dans un système tridimensionnel ?

Équation locale de conservation de la charge

La conservation (c’est-à-dire la non-perte et le non-gain) de la charge électrique dans un
système se traduit par l’équation :

∂ρ

∂t
+ div j⃗ = 0

3.2.3 Conséquences à l’échelle macroscopique
En mécanique des fluides, nous avons montré que l’équation locale de conservation de la masse

∂µ

∂t
+ div J⃗ = 0 pouvait s’écrire, à l’échelle macroscopique :

dM
dt

= Dm,e − Dm,s

avec M la masse du système macroscopique, et Dm,e (respectivement : Dm,s) le débit massique d’entrée
(respectivement : de sortie).
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Question 10 : Établir des correspondances entre les grandeurs électriques et les grandeurs mécaniques.

En utilisant ces analogies, il vient alors que la différence d’intensité d’un bout à l’autre d’un conducteur
est égal à la dérivée temporelle de la charge intérieure à ce conducteur :

Ie − Is = dQint
dt

Cette équation est l’équation intégrale de conservation de la charge.

Question 11 : En régime stationnaire, que peut-on dire de Ie et Is ? Cela est-il cohérent avec l’équation
de conservation de la charge ?

Conservation de la charge en régime stationnaire

En régime stationnaire, les dépendances en temps sont annulées. Il vient alors que ∂ρ

∂t
= 0,

c’est-à-dire que div j⃗ = 0 : le vecteur densité de courant est à flux conservatif.
Du point de vue macroscopique, cela signifie qu’au sein d’un même conducteur, l’intensité
entrante totale doit être égale à l’intensité sortante totale : c’est la loi des nœuds.

3.3 Loi d’Ohm

3.3.1 Modèle de Drude
Considérons un conducteur dont les électrons peuvent se déplacer en son sein quasi-librement. Par souci

de simplification, on supposera que ce conducteur est cylindrique de section S, et qu’un champ électrique
E⃗ met en mouvement les porteurs de charges.

De temps à autres, les électrons vont se heurter à des noyaux qui modifient leurs trajectoires et leurs
vitesses. On modélise cette interaction par une force de frottements f⃗ = −me

τ
.v⃗, où v⃗ représente la vitesse

d’un électron et τ ≈ 1 × 10−14 s est la durée caractéristique entre deux collision d’un électron sur le réseau
du conducteur.

On notera n∗ la densité volumique d’électrons et −e < 0 la charge d’un électron.
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Question 12 : Considérons un électron de masse me. Faire le bilan des forces s’appliquant sur ce
système, et appliquer le PFD pour déterminer une équation différentielle portant sur v⃗.

Question 13 : Résoudre cette équation différentielle à l’aide d’un vecteur constant arbitraire A⃗ que l’on
ne cherchera pas à expliciter. Au vu de la valeur numérique de τ , que peut-on dire de v⃗ ?

Question 14 : Rappeler la définition du vecteur densité de courant j⃗, puis l’exprimer explicitement à
l’aide des résultats précédents.

Loi d’Ohm locale

Le vecteur densité de courant j⃗ parcourant un conducteur est proportionnel au champ
électrique E⃗ en son sein :

j⃗ = γ.E⃗

γ est la conductivité électrique du milieu, qui est toujours positive et s’exprime en Ω−1 ·m−1

(ou siemens par mètre S · m−1). j⃗ et E⃗ ont donc même direction et même sens.

¬ Remarque : On peut citer quelques valeurs de conductivités électrique : γcuivre = 6 × 107 Ω−1 · m−1 ;
γfer = 1 × 107 Ω−1 · m−1 ; γeau distillée = 1 × 10−5 Ω−1 · m−1.
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3.3.2 De l’aspect local à l’aspect global
Considérons un conducteur filiforme de section S et de longueur ℓ ; on suppose que la loi d’Ohm locale

s’y applique. Par souci de simplification, le conducteur sera considéré rectiligne, selon un axe (O, x) ; on a
donc j⃗ = j.−→ex et E⃗ = E.−→ex (voir figure 3.3).

V1

x = 0

V2

x = ℓ

j⃗

Figure 3.3 – Conducteur filiforme parcouru par un courant.

Question 15 : Montrer que la tension électrique entre les points x = 0 et x = ℓ s’écrit U = E × ℓ.

Question 16 : Exprimer l’intensité i parcourant le conducteur en fonction de j. Montrer, à partir de la
loi d’Ohm locale, que l’intensité et la tension U sont proportionnelles.

Loi d’Ohm intégrale

Soit un conducteur de longueur ℓ, de section S et de conductivité électrique γ possédant
une tension U à ses bornes. L’intensité i du courant électrique s’écoulant entre ces deux
bornes est proportionnelle à U :

U = R × i

où R ≜
ℓ

γS
est la résistance électrique du conducteur.
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Question 17 : Calculer la résistance électrique d’un fil de cuivre de diamètre d = 0,45 mm et de
longueur L = 1 m.

3.3.3 Effet Joule

Considérons des électrons de charge −e et de vitesse v⃗, plongés dans un champ électrique E⃗. On note
la densité particulaire n∗.

Question 18 : Exprimer la puissance P qu’exerce le champ électrique sur un électron en fonction des
données de l’énoncé.

Question 19 : En déduire la puissance par unité de volume p qu’exerce le champ électrique sur les
électrons. Montrer que l’on peut écrire p = j⃗ · E⃗.

Puissance volumique cédée à la matière

Des porteurs de charge en mouvement dans un champ électrique cèdent une puissance
volumique pJ (en W/m3) proportionnelle au vecteur densité de courant et au champ
électrique :

pJ = −j⃗ · E⃗

Cette puissance (négative) se transfère à la matière environnante, généralement sous forme
de chaleur : c’est ce que l’on appelle l’effet Joule.
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Question 20 : Montrer que l’on peut écrire pJ = −γE⃗2 et pJ = − j⃗2

γ
.

Question 21 : On rappelle que i = j × S et U = E × ℓ avec S la section du conducteur et ℓ sa
longueur. Montrer que l’on retrouve une puissance perdue par effet Joule sous la forme PJ = −Ri2 pour un
conducteur macroscopique.

Questions de cours

À cocher quand vous savez y répondre par vous-même...

□ Rappeler la définition de la densité volumique de courant. On explicitera chacun des termes ainsi que
leurs unités. Quel est son lien avec l’intensité du courant ?

□ Établir l’équation locale de conservation de la charge unidimensionnelle. La généraliser à trois
dimensions.

□ Énoncer la loi d’Ohm locale, en explicitant chacun des termes ainsi que leurs unités respectives.
Donner l’ordre de grandeur de conductivité électrique dans un métal.

□ À partir de la loi d’Ohm locale, démontrer la loi d’Ohm intégrale U = R × i. Donner l’expression de
R en fonction de la conductivité électrique, de la section du conducteur (supposée uniforme) et de sa
longueur.

□ Donner l’expression de la puissance volumique cédée par des porteurs de charge à la matière environ-
nante. Sous quelle forme l’énergie est-elle échangée ? Commenter le signe.
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