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Theéme 7 : Mécanique des fluides
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FIGURE 1 — Philosophe, mathématicien et physicien frangais, Blaise Pascal (1623-1662) étudie la
pression dans les fluides au repos. Il démontre qu’elle se transmet intégralement dans toutes les
directions, fondant ce qu’on appelle aujourd’hui le principe de Pascal. Son expérience du barometre a
Puy-de-Dome marque l’histoire de la physique. L’unité de pression (Pa) porte son nom.
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FIGURE 2 — Physicien et mathématicien italien, éleve de Galilée, Evangelista Torricelli (1608—-1647)
est le premier a construire un barometre a mercure. Il démontre que la pression atmosphérique est a
I’origine de la montée des liquides, réfutant ’idée du « vide abhorré par la nature ». Il établit aussi une
loi sur la vitesse de vidange des fluides liée a la hauteur, connue sous le nom de loi de Torricelli.

FIGURE 3 — Physicien italien, Giovanni Battista Venturi (1746-1822) met en évidence un phénomene
contre-intuitif : lorsqu’un fluide s’écoule dans une conduite & section rétrécie, sa vitesse augmente et sa
pression diminue. Cet effet Venturi illustre concrétement la conservation de 1’énergie dans un fluide en
mouvement, tel que formulé plus tard dans la relation de Bernoulli.
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FIGURE 4 — Mathématicien et physicien suisse, Daniel Bernoulli (1700-1782) établit une relation entre
pression, vitesse et altitude dans un écoulement fluide, connue sous le nom de relation de Bernoulli.
Elle découle du premier principe de la thermodynamique appliqué a un écoulement parfait. Son travail
inaugure ’étude énergétique des fluides en mouvement.

FIGURE 5 — Mathématicien suisse, Leonhard Euler (1707-1783) applique la mécanique de Newton
aux fluides, formulant les équations d’Euler qui décrivent le mouvement d’un fluide parfait (non
visqueux). Son approche fonde la mécanique des fluides théorique moderne et sert encore de base a
I’aérodynamique.
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Chapitre 1 : Statique des fluides

b Objectifs :

Citer des ordres de grandeur des dimensions de I'échelle mésoscopique dans le cas des liquides et des
gaz.

Citer des ordres de grandeur de valeurs de pression dans des situations usuelles.
Calculer la force de pression s'exercant sur une surface, la pression étant uniforme.

Démontrer |'expression de la résultante des forces de pression s'exercant sur un volume élémentaire
de fluide dans le cas d'une variation unidirectionnelle de la pression. Généraliser sans démonstration
pour une situation quelconque en utilisant I'opérateur gradient.

Exploiter I'expression générale admise de la force volumique associée aux forces de pression, |'expression
de I'opérateur gradient étant fournie.

Enoncer et établir la relation de la statique des fluides dans le cas d'un fluide soumis uniquement a la
pesanteur, supposée uniforme.

Exprimer I'évolution de la pression avec |'altitude dans le cas d'un fluide incompressible. Citer une
application pratique.

Exprimer I"évolution de la pression avec I'altitude dans le cas d'une atmosphere isotherme assimilée a
un gaz parfait.

Expliquer I'origine de la poussée d'Archiméde. Citer et exploiter |'expression de la poussée d’Archiméde.

Rappels sur le lien entre l'intégration et la somme

A une dimension

Soit une fonction f(x) définie sur [a,b] et n € N*. Posons h,, = 2% par exemple, pour n =4 :
n
f(@)
N
1 h4 1 1 h4 \<—>\
7S |
| | | | |
l l l l l x
a b

Si I'on cherche a calculer I'aire A sous la courbe de f, on peut « naivement » approximer la fonction
par une fonction en escalier (voir ci-dessous).
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On a alors :
A= f(a) X hy+ fla+hy) X hp+ ... fla+ (n—1)h,) X hy

Cette approximation est d'autant meilleure que n est grand. Lorsque n — oo, on a alors h, — 0... sans
pour autant valoir 0! On note deés lors dz ce pas d'intégration « infinitésimal » (c’est-a-dire « trés petit »).
L'aire A sous la courbe est alors égale a la somme :

A= f(a) xdz+ f(a+dz) xdz+ ...+ f(b—dzx) x dx

On décide de noter cette somme via le symboIeE| :

/abf(a:) dz

qu'il faut lire/comprendre sous la forme :
« Somme des f(x) x dx avec x variant de maniére continue entre a et b »E|

Il s’avere que, par le théoréme fondamental de I'analyse, cette somme peut se calculer sous la forme
d'une différence de primitive :

[ f@de = F) - Fla)

avec F' une primitive de f. Ce résultat n'est cependant pas la définition de I'intégrale : il s'agit plutot d'un
moyen facile de déterminer sa valeur numérique !

On dit que cette intégrale est une intégrale a une dimension : on somme les valeurs de f selon I'unique
dimension .

A deux dimensions

Supposons que I'on connaisse le champ de pressions p(z,y) dans un plan de |'atmosphére.

a a-+dza+ 2dz b—dx b
| | | | | T

| | | | |
C <
c+dy +
c+2dy +

Jo
d—dy +
d +4
—
dz

Y

1. Le symbole de I'intégrale f n’est en réalité rien d’autre qu'un « S » stylisé, représentant justement la Somme.
2. On pourrait me répondre qu’on ne va pas jusqu'a b, mais jusqu’a b — dz... Mais il s’avere que dx tend vers 0, donc
la différence est vraiment négligeable.
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Theéme 7 : Mécanique des fluides

Si I'on souhaite calculer la force totale F' s'exercant sur une plaque contenue dans ce plan (avec x € [a, b]
et y € [¢,d]), on peut sommer les forces s'exercant sur chacune des surfaces infinitésimales dz x dy :

p(a,c) x dxdy p(a + dz,c) x dxdy
p(a,c+dy) x dzdy p(a+dx,c+ dy) x dzdy

+ + pla+b—dz,c) x dedy
+ + -+
F =4 pla,c+2dy) xdzdy + p(a+dz,c+2dy) x dzdy +
+ + +
+

pla+b—dx,c+ dy) x dedy
p(a+b—dz,c+ 2dy) x dzdy

+

+ pla,d— dy) x dxdy + pla+dz,d—dy) x dzedy pla+b—dx,d—dy) x dedy

Ce que I'on peut réécrire sous la forme :

/b (z,c)dzdy

b
/ x, ¢+ dy)dzdy

b
Vady = . B0 £ plrictdy) +pla et 2dy) ...+ pl(a.d — dy)]dyda
d
p(z,y)dy

_l’_

b
T+ pxc+2dy

+

b C
+ pxd dy)dzdy

On note alors :
r=b pry=d
F = / p(z,y)dzrdy
r=a Jy=c

en précisant bien dans les bornes de I'intégrale sur quel domaine opere chaque variable.

Il peut arriver que I'on décider de sommer la pression — par exemple — selon une surface infinitésimale
qui n'est pas rectangulaire, c'est-a-dire qui n’est pas de la forme dzdy. Cette situation arrive notamment
lorsque les problemes sont a symétrie cylindrique ou sphérique.

On note alors, de maniére plus générale, la double intégrale sous la forme :

F= H M) dS

M eplaque

ou les bornes de I'intégrale ont été remplacées par la surface physique sur laquelle il faut sommer, et dSy,
représente |'aire infinitésimale d'intégration (précédemment, on avait donc dS = dzdy) localisée autour
d'un point M de la plaque. On n'indique en particulier pas de quoi dépend p, car il n'est pas pertinent
d'utiliser les variables = et y si I'on est en coordonnées sphériques, par exemple.

A trois dimensions

Les problemes précédents peuvent également se poser a trois dimensions. Prenons par exemple la Terre,
que I'on supposera sphérique et constituée de couches concentriques (le noyau interne, le noyau externe, le
manteau inférieur, le manteau extérieur et la croiite).

Ces couches ont des compositions différentes, et donc des masses volumiques p; différentes. Si I'on
cherche a exprimer la masse totale m de la Terre, on va alors écrire :

> %V
couches ¢

Si I'on cherche a étre encore plus précis, on peut tout simplement dire qu'a chaque élément de volume
infinitésimal dV; situé en un point M de la Terre, on peut associer une masse dm = (M) x dVj;. Puisque
I'on somme dans trois directions, on note alors que le calcul de la masse totale se fait via une triple intégrale :

=[] oo

MeTerre
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Theéme 7 : Mécanique des fluides

1.1 Actions dans un fluide

1.1.1 Description lagrangienne, description eulérienne

Dans ce theme, nous allons étudier les actions mécaniques au sein des quidesEl statiques ou en
écoulement. Pour les décrire, on peut essayer de décomposer le fluide en particules fluides, dont les volumes
mésoscopiques dV sont tres grands par rapport a I'échelle microscopique, mais trés petits par rapport a
I'échelle macroscopique. Chaque méso-volume possede des coordonnées x (%), yar(t), zar(t), une vitesse
m(t) une pression pas(t), etc. Cette vision des choses est la description lagrangienne d'un fluide.

Si I'on choisit ce point de vue, il ne s’agit alors de rien d'autre qu'un probléme de mécanique du point :
si I'on connait toutes les forces extérieures, on peut appliquer un PFD et conclure. Cependant, un fleuve
possede une infinité de particules fluides, et il faut donc faire une infinité de PFD (et multiplier cette infinité
par 3 pour déterminer le nombre d'équations couplées a résoudre). Cette approche ne nous convient donc

pas ici.

Un autre point de vue est de visualiser le fluide dans sa globalité, au lieu de considérer des particules
fluides se déplacant dans I'espace et dans le temps. Au lieu de définir, par exemple, la pression de chaque
particule fluide pas(t), on va définir un champ de températures p(x,y, z,t), écrit de maniére plus compacte
p(M,1).

Ainsi, au lieu d’avoir une infinité de grandeurs pps(t), on va se limiter a une fonction de plusieurs
variables M (point dans I'espace) et t (temps). Ce raisonnement peut étre fait pour différentes grandeurs :
p(M,t) pour la pression, U(M,t) pour la vitesse, etc.

Il vient nécessairement que les dérivées sont a préciser : dériver par rapport al

bscisse x n'a probablement

L L . . 70U . :
rien a voir avec la dérivation temporelle. On écrira donc respectivement 9z ou Te ou les variables d'espace
x

et de temps sont toutes les quatre décorrélées les unes par rapport aux autres!

En mécanique des fluides, nous utiliserons de maniére systématique cette description des milieux,
appelée description eulérienne. Puisque les mesures ne doivent dépendre que de |'endroit choisi, seule une
description utilisant des grandeurs intensives a du sens : le choix est généralement de prendre des grandeurs
volumiques.

1.1.2 Le poids

Prenons ainsi un élément de volume infinitésimal 6V et de masse dm.

= —
Question 1 : Quel est le poids P de cette particule fluide ? En déduire le « poids volumique » fpoids
en N/m?.

Force volumique associée au poids

Si I'on note p(M,t) le champ de masse volumique, la force volumique associée au

poids peut s'écrire :
—> o
fpoids = K-g

3. Pour rappel, un fluide est un liquide ou un gaz.
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Theéme 7 : Mécanique des fluides

1.1.3 La pression

Nous avons précédemment défini la pression p a partir de |a force pressante [}, s'exercant sur une surface

F s g
S:p= gp. Considérons a présent un élément infinitésimal dV (voir figure .

(0, 2)

d /
¥ dx

(0, )

FIGURE 1.1 — Volume mésoscopique dV = dx x dy x dz.

On suppose que la pression p n'est pas uniformeE]: elle dépend de I'altitude z. On a donc p = p(z).

Question 2 : Que peut-on dire des pressions respectives des faces gauche, droite, avant et arriére du
volume mésoscopique ? Qu'en déduit-on quant aux composants horizontales des forces de pression ?

Question 3 : Exprimer les forces de pression § Fhaut et 0 Fpas S'exercant respectivement sur les faces
haute et basse du volume mésoscopique.

4. Une grandeur uniforme est une grandeur ne dépendant pas de 1’espace. Il ne faut pas la confondre avec une grandeur
constante, qui ne dépend pas du temps.
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On rappelle que la dérivée d'une fonction f au point a est mathématiquement définie par

e = ti T W =S @)

. . - o : 0
Question 4 : Montrer que la résultante des forces de pression dF), peut s'écrire en fonction de 9P ot

0z

du volume élémentaire dV'.

Question 5 : Comment pourrait-on généraliser 0 F), si la pression dépendait de x, y et 27

Gradient d’un champ scalaire

s
Le gradient grad F' d'un champ scalaire F(x,y, z) vaut :

oOF
ox
8Fe_z>+8Fe_y>+8F _ Z_F
ox oy 0z &
oF
0z

grad F2

On utilise parfois la « notation nabla[]» :

grad F=VF oi V= 7

a. Le symbole V se prononce « nabla »

J

— — —
& Remarque : Le gradient est un opérateur linéaire (grad (F'+ \.G) = grad (F') + A.grad (G) avec F'

et G deux champ scalaires et A une constante) et qui commute notamment avec la dérivation temporelle
— (OF 0—
(grad = 8—grad (F)).

ot
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W& Remarque : Interprétons physiquement ce qu’est le gradient d'un champ F'. Si F’ croit localement selon

la direction (O, x), alors e >0, et a—e_m) est dans le méme sens que e_g. En étendant ce raisonnement
x T

aux autres coordonnées, on comprend que grad F' correspond localement a un vecteur étant orienté des
faibles valeurs de F' vers les grandes valeurs de F.

Force volumique associée aux forces de pression

Une particule fluide subit une force volumique résultant de la pression p du fluide environ-
nant. La force volumique associée aux forces de pression s'écrit :

— —
fp = —grad p

1.2 Relation de la statique des fluides

1.2.1 Démonstraton

On considére un fluide au repos dans le champ de pesanteur g (dans la direction z). On note p la masse
volumique du fluide (pas forcément uniforme), et on s'intéresse particulierement a un volume mésoscopique

de fluide dV'.

Question 6 : Exprimer les forces s'appliquant sur ce volume infinitésimal, puis appliquer le PFD a ce
volume.

Relation de la statique des fluides

Pour un fluide de masse volumique p au repos dans le champ de pesanteur g, la relation
fondamentale de la statique des fluides énonce que la pression augmente dans la méme
direction et le méme sens que g :

— .
grad p = pug
En particulier :

. L, - d
— Si I'axe z est orienté vers le haut, alors g = —g.e_; et on a d—p = —ug;
z

. d
— Si 'axe z est orienté vers le bas, alors g = g.e_z) et on a d_p = lug.
z
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Theéme 7 : Mécanique des fluides

Question 7 : Que donnent les projections selon x et y ? Est-ce logique au vu des symétries du probléeme ?

Question 8 : Si §= —g.€7 (z orienté vers le haut), que donne la projection selon la direction z 7 Et si
G = g.e; (z orienté vers le bas)?

1.2.2 Résultats immédiats
Lien pression-altitude

Question 9 : Supposons |'axe vertical descendant. p augmente-t-elle ou diminue-t-elle avec la profondeur ?
Est-ce logique ? Donner un exemple.

Question 10 : Supposons I'axe vertical ascendant. p augmente-t-elle ou diminue-t-elle avec I'altitude ?
Est-ce logique ? Donner un exemple.
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Question 11 : Observons le systéme en figure [I.2} rempli d'un fluide au repos. Que peut-on dire des
pressions en A, en B et en C' 7 Justifier.

FIGURE 1.2 — Récipient rempli d’un méme fluide.

Pression et altitude dans un fluide

La pression dans un fluide au repos ne dépend que de I'altitude du point considéré ; elle
diminue avec I'altitude, et augmente avec la profondeur.

En particulier, le fluide au repos n'est a pression atmosphérique paym que pour une altitude
z = cste correspondant a la surface libre fluide-atmosphere.

& Remarque : Attention a ne pas aller trop vite dans les conclusions s'il y a deux fluides! Dans ce cas,
z = cste ne signifie pas forcément qu’on est a la méme pression (imaginez I'intérieur et |'extérieur d'une

cuve remplie d'eau).
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Theéme 7 : Mécanique des fluides

Conséquences pour un fluide incompressible

Un fluide incompressible ne change pas de volume lorsque la pression augmente. Nécessairement, cela
signifie que la masse volumique p est indépendante de la pression, et donc uniforme s’il n'y a pas de gradient
de température.

Question 12 : On suppose I'axe vertical ascendant. A I'aide de |a relation fondamentale de I'hydrostatique,
exprimer p(z) en fonction de 1, g, z et pg = p(z = 0).

Question 13 : Méme question pour un axe vertical descendant.

Pression et altitude dans un fluide incompressible

Soit un fluide incompressible et au repos de masse volumique uniforme p. La différence de
pression pp — p4 entre deux points est proportionnelle a la dénivellation zg — z4 entre
ces deux points :

pB —pA = Tpug(2B — 24)

Le signe + indique un axe vertical descendant; le signe — indique un axe vertical ascendant.
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Theéme 7 : Mécanique des fluides

z A
B + 80m A B T —10m A
ZB — ZA %A — %B
A+ 50m e A T 20m v
RN

FIGURE 1.3 - A gauche, la distance entre les deux points est 25—z 4 ; a droite, la distance est z4 —zp. Les
applications numériques donnent logiquement le méme résultat : a gauche, zp—24 = 80 m—50m = 30 m,
et a droite, z4 — zp = 20m — (—10m) = 30m. Puisque la pression augmente avec la profondeur,
on a toujours py > pp. On en déduit qu’a gauche : py = pp + pug(zp — z4), alors qu’a droite :
pa =pp + pg(za — zB).

1.3 Applications

1.3.1 Barrage

Prenons |'exemple d'un barrage permettant de contenir I'eau (au repos) d'un réservoir. On prend un axe
vertical descendant, dont I'origine correspond a la surface libre de I'eau (voir figure [1.4)).

On note patm = 1,0 x 10° Pa la pression atmosphérique, z la profondeur d'un point M quelconque du
fluide et = 1,0 x 103 kg - m~3 la masse volumique uniforme de I'eau. Le barrage a une largeur L = 50 m
selon la direction y, et I'eau va jusqu'a une profondeur h = 10 m.

z=0 +
®
L
z=h
®O—z
Yy
(0,z)

FIGURE 1.4 — Modélisation d’un barrage vu en coupe.

L'objectif est de calculer la force pressante I’ qu'exerce I'eau sur le mur du barrage.
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Theéme 7 : Mécanique des fluides

Question 14 : Soit un point M contenu dans |'eau. Exprimer la pression p en M en fonction des
données de I'énoncé.

Question 15 : La pression dans I'eau dépend-elle de la longueur du barrage selon la direction x 7

Question 16 : Exprimer la force pressante élémentaire §F' s'exercant sur une surface infinitésimale
dydz du mur du barrage en fonction des données de I'énoncé et de la surface élémentaire.

Question 17 : En déduire, par une double intégrale, |'expression de F'.

& Remarque : Quand on a une invariance selon une direction de |'espace (ici y), on peut directement
dire que I'élément de surface est L dz, ce qui donne une intégrale simple a calculer et non plus double. I
faut retenir I'astuce...

ATS - Lycée Louis Armand 16 A. Diet



Theéme 7 : Mécanique des fluides

Question 18 : Faire I'application numérique.

1.3.2 Atmosphére isotherme

Considérons une atmosphere isotherme (7' = 273K) dans le champ de pesanteur terrestre § sup-
posé uniforme, méme a grande altitude. L'atmospheére est modélisée par un gaz parfait de masse molaire
M =29g-mol~!. On note i la masse volumique de |'atmosphere (qui n'est plus uniforme : c’est un gaz,
donc compressible !), et on choisit un axe vertical ascendant. py représente I'altitude en z = 0.

Question 19 : Rappeler la loi des gaz parfaits. Montrer qu'on peut |'écrire sous la forme « intensive » :
Mxp=puxRxT.

Question 20 : En isolant i dans I'expression précédente et en utilisant la relation de I'hydrostatique,

d
ep + — x p = 0. Donner I'expression et la valeur de A.

montrer que I'on a :
dz A
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Theéme 7 : Mécanique des fluides

Question 21 : Résoudre |'équation différentielle précédente, en utilisant la condition aux limites en
z = 0.

Question 22 : En déduire I'expression de p(z).

1.3.3 Poussée d’Archiméde

Considérons un corps macroscopique immergé[ﬂ au moins partiellement dans un fluide de masse volumique
Ufluide- On note Vimm le volume immergé.

Question 23 : Montrer que la résultante des forces de pression que le fluide extérieur exerce sur |'objet
peut s'écrire _Mfluidewmmg-

5. Un ballon dans I’air, un bateau flottant sur I’eau...
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Theéme 7 : Mécanique des fluides

Poussée d’Archimede

La poussée d’Archimeéde H—>A est la force que subit un corps placé entierement ou
partiellement dans un fluide et soumis a un champ de gravité. Cette force provient de la
variation de la pression du fluide avec la profondeur ou I'altitude : la pression étant plus
forte sur la partie inférieure d'un objet immergé que sur sa partie supérieure, il en résulte
une poussée globalement verticale ascendante.

Un corps ayant un volume Viynm immergé dans un fluide de masse volumique pfiuige Subira
donc la force : .
HA = _Nfluide‘/immg

ou g représente le champ de pesanteur.

Question 24 : On formule parfois le théoréme d'Archiméde ainsi : « Tout corps plongé dans un fluide
au repos [...] subit une force [...] opposée au poids du volume de fluide déplacé ». Justifier cette formulation.

Outils mathématiques

Périmetre d’un cercle

Le périmetre d'un cercle de rayon R est 27 R.

Aire d’un disque

L'aire d'un disque de rayon R est mR2.

Aire de la paroi latérale d’un cylindre

L'aire de la paroi latérale d'un cylindre de hauteur h et de rayon R est 2w Rh.

Aire d’une sphere

L'aire d'une sphére de rayon R est 47 R?.

Volume d’un cylindre

Le volume d'un cylindre de hauteur h de rayon R est TR?h.

Volume d’une boule

|

Le volume d'une boule de rayon R est §7TR3.
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Theéme 7 : Mécanique des fluides

Questions de cours

A cocher quand vous savez y répondre par vous-méme...

O

]

O

Donner |'expression du gradient grad F' d'un champ scalaire F(z,y, z). Quelle est I'interprétation
géométrique de grad F'7
Démontrer |'expression de la résultante des forces de pression s'exercant sur un volume élémentaire

de fluide dans le cas d’'une variation unidirectionnelle de la pression. Généraliser sans démonstration
pour une situation quelconque en utilisant I'opérateur gradient.

Etablir la relation de la statique des fluides. En déduire les expressions de d—p selon le sens de |'axe
z

vertical.

Pour un fluide incompressible, que peut-on dire de la masse volumique p? En déduire une expression
simple de p4 — pp en fonction de u, g, z4 et zp, ou A et B sont deux points quelconques du fluide.

A I'aide de la relation fondamentale de la statique des fluides, établir I'expression de p(z) dans une
atmosphére isotherme assimilée a un gaz parfait. Déterminer la longueur caractéristique L de variation
de la pression.

Donner I'expression de la poussée d'Archiméde, et expliquer son origine.

Rappeler les expressions du périmeétre d'un cercle, de I'aire d'un disque, de |'aire de la paroi latérale
d'un cylindre, de I'aire d’une sphére, du volume d'un cylindre et du volume d'une boule.
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Chapitre 2 : Description d’un fluide en écoulement

&b Objectifs :

2.1

Décrire les propriétés thermodynamiques et mécaniques d'un fluide a I'aide des grandeurs locales
pertinentes.

Représenter les lignes de courant d'un champ de vitesses uniforme et stationnaire.
Analyser des vidéos, des simulations ou des cartographies d'écoulement.
Réaliser un bilan de masse ou de volume sur une portion de fluide, les débits étant connus.

Montrer que dans un écoulement stationnaire, le débit massique se conserve le long d'un tube de
courant ; exploiter cette propriété.

Montrer que, dans un écoulement de fluide incompressible, le débit volumique se conserve le long
d’un tube de courant; exploiter cette propriété.

Exprimer les débits volumique et massique pour un écoulement unidirectionnel uniforme.

Calculer le débit volumique (resp. : massique) du fluide a travers une surface quelconque a I'aide du
flux du vecteur vitesse (resp. : vecteur densité courant de masse), considéré comme uniforme.

Exploiter qualitativement la topographie des lignes de courant pour prévoir les variations de la norme
du vecteur vitesse le long des tubes de courant.

Démontrer I'équation locale de conservation de la masse dans un écoulement de fluide unidirectionnel.
Généraliser au cas tridimensionnel.

Exploiter |'expression fournie de I'opérateur divergence.

Montrer que la divergence du champ des vitesses d'un fluide incompressible est nulle en tout point.

Champ des vitesses

Ligne de courant

On appelle ligne de courant la trajectoire d'une particule fluide dans un écoulement. Il
s'agit donc d'une ligne orientée et tangente en tout point au champ des vitesses (M, t).

o x

lower

FIGURE 2.1 — Lignes de courant théoriques autour d’une aile. By Michael Belisle - Own work, Public
Domain, https ://commons.wikimedia.org/w/index.php ?curid=3932235
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Theéme 7 : Mécanique des fluides

FIGURE 2.2 — Lignes de courant expérimentales autour d’une aile, selon ’angle d’attaque. Photographies
issues de How do wings work ¢, DOI :10.1088/0031-9120/38/6,/001

Tube de courant

Un tube de courant est une surface ouverte[”] fictive définie par la réunion de lignes de
courant s'appuyant sur un contour fermé.

a. Cela signifie qu’il y a au moins un « trou » dans la surface; ici, il y a une frontiere d’entrée et
une frontiére de sortie.

W Remarque : Par définition, la vitesse orthogonale a la frontiére est nulle et il n'y a donc pas de fluide
traversant les parois latérales ce tube, ce qui justifie que les particules fluides y soient confinées (voir figure
: le champ de vitesse est toujours tangent a la paroi latérale du tube de courant).

C2

C1 7
v3

A
v2

FIGURE 2.3 — Tube de courant partant d’un contour fictif C; pour finir sur un contour fictif Cy. Par
Twisp — Travail personnel (Image based on now-deleted File :Streamlines and streamtube.png)Cette
image vectorielle SVG non W3C-spécifiée a été créée avec Inkscape ., Domaine public, https ://com-
mons.wikimedia.org/w/index.php ?curid=3475420
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Theéme 7 : Mécanique des fluides

Intermede mathématique : flux d’'un champ

Considérons un champ des vitesses orienté selon un vecteur unitaire uy v = vg.u_g. Supposons que
I'on ait a disposition un capteur plan sensible a ce champ des vitesses; on note S la surface du capteur et
7 le vecteur orthogonal a celui-ci.

Plusieurs situations sont alors possibles :

FIGURE 2.4 — Positions possibles du capteur (gris, rectangulaire) vis-a-vis du champ des vitesses (lignes
de courant en rouge).

Question 1 : Comment orienter le capteur w par rapport au champ de direction u pour capter un
maximum de ce champ ? Un minimum de ce champ?

Flux d’'un champ uniforme a travers une surface plane

Le flux ® 4 d’'un champ Z uniforme a travers une surface plane S orientée par un vecteur
unitaire 77 vaut :
b= A-57

A . 7 s . 7 g
En notant ? £ $.77 la surface orientée, on peut réécrire cette equation :

b = A-9

& Remarque : Le signe du flux dépend donc de la facon dont on oriente la surface S via le vecteur .

Il faudra donc retenir, selon les différents théorémes vus au long de I'année, comment ce vecteur normal est
défini !

On peut également calculer le flux d’'un champ a travers une surface non plane. Effectivement, sous
certaines hypotheses mathématiques trés raisonnables en physique, on peut considérer qu'une surface
macroscopiquement courbe « suffisamment réguliére » est mésoscopiquement plane (voir figure .

Ainsi, on peut découper la surface S macroscopique totale en surfaces mésoscopiques dSp; plans centrés
autour d'un point M parcourant la surface : S = ff dS(M). On associe également a chaque surface

MeS
infinitésimale un vecteur n(M) localement normal.
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Theéme 7 : Mécanique des fluides

FIGURE 2.5 — Planéité locale de la matiere.

Finalement, le flux total du champ des vitesses est la somme (continue, donc avec une intégrale) de
(M) - dS(M).n(Mi = (M) - dS(Mi.

chacune des contributions mésoscopiques d®,, (M)

Flux d’un champ a travers une surface quelconque

Le flux ® 4 d’'un champ Z a travers une surface S quelconque vaut

Py = fj Z(M)'dm

MeS

Question 2 : Si 7(M) est uniforme sur la surface d’'intégration et orthogonale a celle-ci en tout point,

comment se simplifie I'équation du flux?

Il peut arriver que la surface d'intégration soit fermée, c'est-a-dire qu’elle ne soit « percée » d'aucun
trou. Pour signifier que I'on « retombe sur nos pattes », on note alors I'intégrale avec un cercle :

Py = @S Z(M)'dm

MeS

A. Diet
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Theéme 7 : Mécanique des fluides

2.2 Deébits

2.2.1 Débit massique

Vecteur densité de masse

Soit un déplacement de particules fluides dans 'espace. On note respectivement p(M,t)
et (M, t) la masse volumique et la vitesse eulériennes de I'écoulement.
On définit alors le vecteur densité (volumique) de masse J comme :

-

J = pv

Il représente grossierement a quel point « beaucoup de matiére » arrive « trés vite » en un

point.

Question 3 : Déterminer I'unité Sl de .J.

Débit massique

Soit un fluide en écoulement, dont le vecteur densité de masse est noté J. Le débit
massique de cet écoulement a travers une surface S est égal au flux du vecteur densité
de masse a travers cette surface :
= —
Dy = ﬂ J(M) - dSs
MeS

[}
5!
=

N/

Le débit massique s'exprime en kg - s .

W Remarque : On choisit généralement |'orientation de S telle que le débit massique soit positif.

On suppose I'écoulement uniforme sur la surface d'intégration S, qui est orthogonale a la section de

17
I"écoulement.

Question 4 : Comment se simplifie I'expression du débit massique ?
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Theéme 7 : Mécanique des fluides

Question 5 : On attend une durée At; les particules fluides initialement aux niveau de S se situent a
une distance L de celle-ci. Quel est le lien entre v, L et At?

Question 6 : En déduire une relation entre D,,,, At et la masse évacuée AM pendant cette durée.

Autre vision du débit massique

Le débit massique d'un écoulement peut s'interpréter comme la masse du fluide débitée

par unité de temps :
AM
Dy = ———
™At

2.2.2 Débit volumique

Débit volumique

Soit un fluide en écoulement, dont le champ des vitesses est noté ¥. Le débit volumique
de cet écoulement a travers une surface S est égal au flux de la vitesse a travers cette
surface : .
D, = [[ #(M)-dSy
MeS

Le débit volumique s'exprime en m?/s.
Si le champ de vitesse est uniforme sur la section S d'intégration, on a alors D, = v x S.

& Remarque : On choisit généralement |'orientation de S telle que le débit volumique soit positif.

Ecoulement homogeéne

Un écoulement est homogene si la masse volumique p du fluide est uniforme, c'est-a-dire
si elle est identique en tout point de |'écoulement.

Ecoulement incompressible

Un écoulement est incompressible si la masse volumique i du fluide est uniforme et
constante, c'est-a-dire si elle est identique en tout point et a tout instant de I'écoulement.
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Theéme 7 : Mécanique des fluides

Question 7 : Un écoulement stationnaire et homogeéne est-il incompressible ? Justifier.

Question 8 : Etablir une relation simple entre le débit massique et le débit volumique pour un écoulement
incompressible.

Lien entre débit massique et débit volumique pour un écoulement incompressible

Pour un écoulement incompressible, le débit massique D,,, et le débit volumique D,, sont

proportionnels :
Dy = X Dy

avec u la masse volumique du fluide.

&~ Remarque : On peut retenir cette relation uniquement 2 I'aide des unités : 1kg-s~! = 1kg/m3 xm?3/s.

Autre vision du débit volumique

Le débit volumique d'un écoulement peut s'interpréter comme le volume du fluide débité

par unité de temps :
AV

Dy = —
At
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Theéme 7 : Mécanique des fluides

2.3 Lois de conservation

2.3.1 Conservation de la masse

Supposons un écoulement quelconque, et choisissons une surface S fermée quelconque. On sépare dans
I'idée cette surface fermée en deux surfaces ouvertes : S., qui correspond aux zones de S ou I'écoulement
entre, et S, qui correspond aux zones de S ol I'écoulement sort.

On note M(t) la masse de ce systéme a I'instant ¢.

—
dsed

FIGURE 2.6 — Surface de contrdle étudiée.

Question 9 : Exprimer la masse § M, entrant dans le systéme pendant une durée infinitésimale dt en
fonction de Dy, ., débit massique entrant. De méme, exprimer la masse M sortant du systéeme pendant
cette durée dt en fonction de D,, s, débit massique sortant.

Question 10 : Justifier que oM, — 0 Mg = M(t + dt) — M(t). En divisant cette équation par dt,
déterminer une équation liant M (¢) et les débits massiques.
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Equation intégrale de conservation de la masse

Soit un fluide en écoulement dans un systeme 3, dont on note la masse au cours du temps
M(t). La masse se conservant, on a :

dM
T = Dm,e - Dms

ou Dy, . et Dy, s sont les débits massiques respectivement entrant et sortant du systeme.

Ecoulement stationnaire

Un écoulement fluide est dit stationnaire si les grandeurs eulériennes le décrivant ne
dépendent pas du temps.

& Remarque : Attention a ne pas confondre fluide a écoulement stationnaire et fluide statique! Le premier

0 - S
impose que 9 _ 0 (donc que la vitesse ne dépend pas du temps), alors que le second impose que ¥ = 0 en

tout point du fluide. Un fluide statique est un cas particulier de fluide stationnaire, mais I'inverse n’est pas vrai.

Question 11 : En régime stationnaire, que peut-on dire de la masse de fluide M présente dans le tube
de courant ? Que peut-on en conclure quant aux débits massiques d'entrée et de sortie ?

Conservation du débit massique

Pour un écoulement stationnaire, le débit massique se conserve : Dy, . = Dy, 5.

On étudie désormais un méso-volume cylindrique de section S et de longueur infinitésimal dz (voir
figure [2.7)). L'objectif est d'obtenir une relation similaire a I'équation intégrale de conservation de la masse
mais a une échelle locale.

-

On note J(x,t) le vecteur densité de masse en une abscisse = et a un instant ¢, que I'on suppose
uniforme sur une méme section. La masse volumique du troncon est notée p(z,t).

W WW
J(x,t) WJ(z +dz,t)
x r+dz

FIGURE 2.7 — Méso-volume avec une entrée et une sortie de fluide.
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Question 12 : Exprimer la masse M (t) du trongon a un instant ¢ en fonction de u(z,t), S et dz.

Question 13 : Exprimer la masse § M. de fluide entrant dans le troncon pendant une durée infinitésimale
dt en fonction de J(x,t), S et dt. De méme, exprimer la masse M de fluide sortant du troncon pendant
cette méme durée.

Question 14 : Par conservation de la masse, quel lien peut-on établir entre M., IMg, IM(t) et
IM(t + dt)? En déduire une équation liant J et p.

Question 15 : Si I'écoulement était tridimensionnel et pas uniquement selon I'axe horizontal, comment
se généraliserait |'équation précédente?

Divergence d’un champ vectoriel

La divergence div Z d'un champ vectoriel Z = Ag;.e_gc> + Ay.e_y> + Az.e_; vaut :

: a 0A;  0A,  OA,
d|vz_ Oz * oy + 0z

En « écriture nabla », on a donc :

din:?-Z

& Remarque : La divergence est un opérateur linéaire (div (A1 + )\.AQ) =div A; + A x div Ag) et
qui commute notamment avec la dérivation temporelle.
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La divergence d'un champ vectoriel est un scaIaireEl dépendant du point M de |'espace ol on le calcule.
Il est négatif si le champ « rentre davantage que ce qu'il ne sort » d'un volume localisé autour du point M
considéré, et positif si le champ « sort davantage que ce qu'il ne rentre ».

Equation locale de conservation de la masse

Soit un fluide de masse volumique u et de vecteur densité de masse J. Le fait que la
masse se conserve localement s’écrit, mathématiquement :

ou W =
E—Fdle—O

2.3.2 Conservation du débit volumique

On suppose que |'écoulement est incompressible : 1 est uniforme et les grandeurs eulériennes ne dé-
pendent pas du temps.

Question 16 : Réécrire I'équation de conservation du débit massique en fonction des vitesses et des
sections d’entrée et de sortie.

Conservation du débit volumique

Pour un écoulement incompressible, le débit volumique se conserve : D, . = D, ;. On
peut écrire cette équation en fonction des vitesses et des sections : v, X S, = v5 X S.

Considérons |'écoulement d'un fluide dans un tube de courant dont la section diminue brievement (figure
2.8). La vitesse sur une méme section est considérée uniforme, et I'écoulement est incompressible. On note
S 4 la section de la conduite en A, et Sg la section de la conduite en B.

FIGURE 2.8 — Rétrécissement de la section d’un tube de courant.

1. C’est-a-dire un nombre, et non pas un vecteur.
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Question 17 : Exprimer les débits volumiques en A et en B. Justifier I'égalité de ces deux grandeurs.

Question 18 : A-t-on vy > vg ou vg > v4 ? Quel lien peut-on alors faire entre le rapprochement de
lignes de courant et la vitesse du fluide ?

Topographie des lignes de courant et lien avec la vitesse

Pour un écoulement incompressible, un rétrécissement de la section d'un tube de courant,
et donc un rapprochement des lignes de courant, indique une augmentation locale de la
vitesse d'écoulement du fluide.

Question 19 : Que devient I'équation locale de conservation de la masse pour un écoulement incom-
pressible 7

Champ des vitesses d’un écoulement incompressible

La divergence du champ des vitesses d'un écoulement incompressible est nul en tout point :

divv =0
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Questions de cours

A cocher quand vous savez y répondre par vous-méme...

[0 Définir le débit massique et le débit volumique. Donner leurs unités S| respectives.

O Montrer que dans un écoulement stationnaire (respectivement : incompressible), le débit massique
(respectivement : le débit volumique) se conserve le long d'un tube de courant.

[J Enoncer puis démontrer |'équation locale de conservation de la masse dans un écoulement de fluide
unidirectionnel. Généraliser au cas tridimensionnel.

[J Montrer que la divergence du champ des vitesses d'un fluide incompressible est nulle en tout point.
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Chapitre 3 : Energétique d’un fluide en écoulement

b Objectifs :
— Caractériser un écoulement parfait.

— Etablir et exploiter la relation de Bernoulli a partir du premier principe de la thermodynamique appliqué
a un systéme ouvert pour un écoulement parfait, incompressible et stationnaire entre deux points
situés sur une méme ligne de courant.

— Modifier la relation de Bernoulli afin de tenir compte de la dissipation d'énergie mécanique lors de
|"écoulement.

— Exploiter le premier principe de la thermodynamique appliqué a un systéme ouvert pour effectuer un
bilan de puissance dans une conduite pouvant contenir une pompe ou une turbine.

3.1 Relation de Bernoulli

3.1.1 Notations et hypothéses

On s'intéresse, dans cette partie, a un fluide en écoulement stationnaire (aucune variable eulérienne ne
dépend de t). On note u la masse volumique du fluide, considéré comme incompressible (1 ne dépend
donc ni du temps, ni de I'espace : ;1 = cste).

L'écoulement est considéré comme parfait : il n'y a aucune chaleur échangée, et donc pas d’effets de
viscosité ou de conduction de chaleur. Il vient alors que la température 1" est constante.

Le fluide n'est, de plus, soumis qu’a son poids et aux forces de pression.

On note ¥ le champ des vitesses, § = —g.e_z> I'accélération de la pesanteur (la direction z est donc
ascendante ici) et p le champ de pression.

3.1.2 Etablissement de la relation

Question 1 : Rappeler le premier principe de la thermodynamique en systéme ouvert, exprimé en termes
d'énergie. Sous quelle condition est-il valable?

Question 2 : Rappeler les expressions de Ae,, variation d'énergie potentielle massique de pesanteur, et
Ae,, variation d'énergie cinétique massique.
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Ap

Question 3 : Montrer que, dans les hypotheses de I'énoncé, on a Ah =

Question 4 : Dans les hypothéses de I'énoncé, que valent le travail utile massique w,, et le transfert
thermique massique ¢ ?

Question 5 : Déduire des questions précédentes une relation liant la pression, I'altitude et la vitesse du
fluide sur une méme ligne de courant.

Relation de Bernoulli

Soit un fluide parfait, incompressible et soumis uniquement a son poids et aux forces de
pressions considéré en écoulement stationnaire. La quantité X = p + pugz + - puv?, que

I'on appelle la charge hydraulique, se conserve sur une ligne de courant. En d’autres
termes, si A et B sont sur une méme ligne de courant, alors :

1 1
pA+MgZA+§#%24:]93‘1'#923‘1'5#“129

J

W Remarque : Les hypothéses du relation de Bernoulli sont réguliérement demandées aux concours,
que ce soit a I'écrit ou a I'oral.

W Remarque : p est parfois appelée « pression statique », car elle correspond a la pression dont on se
fait I'idée dans le cas de I'hydrostatique. —uv? est alors la « pression dynamique » : elle correspond 3 la

pression « ressentie » face a un écoulement d’air ou un jet d'eau suffisamment puissant.
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3.2 Applications

3.2.1 Effet Venturi

Considérons |'écoulement d'un fluide dans une conduite dont la section diminue brievement (figure [3.1]).
La vitesse sur une méme section est considérée uniforme. L'écoulement est parfait, stationnaire et le fluide
est incompressible. On note S4 la section de la conduite en A, et Sp la section de la conduite en B.

-

FIGURE 3.1 — Illustration de l'effet Venturi.

Question 6 : Exprimer le débit volumique au point A et au point B. Quelles hypothéses permet
d’'égaliser ces deux expressions ?

Question 7 : Appliquer la relation de Bernoulli entre les points A et B. Montrer alors que pg < p4.

W& Remarque : Un rétrécissement de section entraine une augmentation de la vitesse mais une diminution
de la pression, ce qui peut paraitre paradoxal.

W& Remarque : Si les lignes de champ des vitesses se resserrent, on a donc un abaissement de la pression.
A retenir pour certains exercices oti ces lignes apparaissent |
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3.2.2 Vidange de Torricelli

Soit une cuve cylindrique de section .S remplie d'un fluide de masse volumique . Un tuyau de section
s € S permet de faire la vidange de la cuve. On note H la hauteur d'eau, A un point de la surface libre et
B un point du tuyau en contact avec l'extérieur, tels que A et B font partie d'une méme ligne de courant

(voir figure [3.2).

FIGURE 3.2 — Vidange d’une cuve.

Question 8 : Par conservation du débit, montrer que v4 < vp. Quelle conséquence cela améne-t-il sur
I'écoulement ?

Question 9 : Que valent les pressions en A et en B ? Justifier.
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Question 10 : Appliquer la relation de Bernoulli entre A et B. En déduire la vitesse d'écoulement en B
en fonction notamment de la hauteur d'eau H.

3.2.3 Tube de Pitot

Une sonde de Pitot est un dispositif, dont |a taille fait quelques centimétres, et qui permet de déterminer
la vitesse v d'un appareil (tel un avion) a partir de mesures de pressions.

bt

B DPs

L

Ag A

FIGURE 3.3 — Sonde de Pitot.

On négligera dans ce probléme toute variation de hauteur. Les points Ay et By sont suffisamment
proches I'un de |'autre et suffisamment éloignés de la sonde pour affirmer que la pression et la vitesse en
ces points sont égales. Du point de vue de la sonde, la vitesse en ces points est égale a —v. A est un point
d'arrét : I'air, cherchant a s'échapper dans toutes les directions, a en moyenne une vitesse nulle en ce point.

On supposera |'air comme gaz incompressible, et I'écoulement comme stationnaire et parfait.

Question 11 : Appliquer la relation de Bernoulli sur les deux lignes de courants. En déduire une relation
entre ps, pt, et vp. Isoler vp.
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3.3 Relation de Bernoulli généralisée

3.3.1 Actions de pompes ou de turbines

On reprend les hypothéses de la relation de Bernoulli, en en changeant cependant une : on suppose que
le fluide recoit une puissance utile P, entre I'entrée et la sortie (positive si une pompe fournit effectivement
cette puissance, négative si la puissance est cédée a une turbine).

Question 12 : Montrer, en reprenant le premier principe de la thermodynamique en systéeme ouvert,
P,

, ou D, est le débit volumique.
D,

que Xs—XEZ

Prise en compte de pieces mécaniques mobiles

Soit un fluide parfait, incompressible et soumis a son poids et aux forces de pressions
considéré en écoulement stationnaire. Le fluide recoit de plus, au cours de son écoulement,
une puissance utile P, de la part de I'extérieur. Si A et B sont sur une méme ligne de
courant, alors :

Pu

1 1
PE+UGEB+-pUE=DaA+t UG 2a+opvE+
2 2 D,

Question 13 : Supposons que I'on veuille dimensionner une pompe pour qu’elle éléve de I'eau d'une
hauteur H = 10m a un débit volumique D, = 20L - min~!. Le conduit de transport a une section
S = 150cm?; la sortie et I'entrée sont 3 la pression atmosphérique. Déterminer la puissance P 3 apporter 3
la pompe pour qu'elle fonctionne en respectant ce cahier des charges.
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3.3.2 Pertes de charge

La modélisation utilisée pour I'établissement du relation de Bernoulli est bien évidemment idéale : il n'y
a pas de pertes énergétiques considérées le long d'une ligne de courant. En réalité, les forces de viscosité
existent, et le fluide peut étre au contact de pieéces mobiles. On sépare les dissipations selon deux catégories :

— Les pertes de charge réguliéres : elles correspondent aux pertes dues aux effets de viscosité au niveau
des parois. Comme leur nom l'indique, ces pertes ont lieu en tout point des parois : plus la canalisation
sera longue, plus les pertes de charge le seront (et ce de maniére proportionnelle) ;

— Les pertes de charge singuliére : elles correspondent aux pertes dues aux changements de géométrie
des parois (rétrécissement, coude...). Comme leur nom l'indique, ces pertes n'ont lieu qu'au niveau du
changement de géométrie.

., < 1
Ces pertes sont qualifiées « de charge » car elles correspondent a I'écart de charge X £ p+ gz + 5/“}2

entre I'amontH et I'avalﬂ X étant homogeéne a une pression, on note généralement les pertes de charge
Ap > 0 (méme si elles ne correspondent pas forcément a un écart de pression pour le fluide); I'unité est
donc le pascal Pa. Il vient alors que X,yal = Xamont — Ap.

Prise en compte des pertes de charge dans la relation de Bernoulli

Soit un fluide incompressible et soumis a son poids et aux forces de pressions considéré en
écoulement stationnaire. Si A et B sont sur une méme ligne de courant, et que Apap est
la perte de charge entre ces deux points alors :

1 2 1 2
pB+,LLgZB+§NUB:pA+MQZA+§,LLUA_ApAB

Question 14 : On reprend |'exercice précédent de la pompe. On a des pertes de charge réguliéres de
k =20Pa-m™!, avec une longueur totale de canalisation de L = 500 m. Déterminer quelle est la nouvelle
puissance de pompe P’ nécessaire.

1. C’est-a-dire en entrée de ’écoulement.
2. C’est-a-dire en sortie de ’écoulement.
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Questions de cours

A cocher quand vous savez y répondre par vous-méme...

[J Etablir la relation de Bernoulli a partir du premier principe de la thermodynamique appliqué a un
systéme ouvert pour un écoulement parfait, incompressible et stationnaire entre deux points situés sur
une méme ligne de courant.

[0 Enoncer la relation de Bernoulli ainsi que toutes ses hypothéses.

O (Exercice de I'effet Venturi) Soit un écoulement stationnaire et incompressible d'un fluide parfait dans
une canalisation horizontale. Montrer qu'un rétrécissement de section induit une modification de la
pression.

O (Exercice de la vidange de Torricelli) Soit une cuve se vidant par le bas. Le fluide contenu dans la
cuve est parfait et incompressible, et le niveau d'eau en haut de la cuve est constant. On note H la
dénivellation entre le haut de la cuve et sa sortie. Déterminer la vitesse v de |'écoulement en sortie.

O Soit un fluide incompressible en écoulement stationnaire; I et F' sont deux points d'une méme ligne
de courant, avec I en amont et F' en aval. Au cours de I'écoulement, il y a une perte de charge totale
Ap et une pompe de puissance P. Enoncer la relation de Bernoulli généralisée dans ce cas de figure.
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