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Figure 1 – Philosophe, mathématicien et physicien français, Blaise Pascal (1623–1662) étudie la
pression dans les fluides au repos. Il démontre qu’elle se transmet intégralement dans toutes les
directions, fondant ce qu’on appelle aujourd’hui le principe de Pascal. Son expérience du baromètre à
Puy-de-Dôme marque l’histoire de la physique. L’unité de pression (Pa) porte son nom.
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Figure 2 – Physicien et mathématicien italien, élève de Galilée, Evangelista Torricelli (1608–1647)
est le premier à construire un baromètre à mercure. Il démontre que la pression atmosphérique est à
l’origine de la montée des liquides, réfutant l’idée du « vide abhorré par la nature ». Il établit aussi une
loi sur la vitesse de vidange des fluides liée à la hauteur, connue sous le nom de loi de Torricelli.

Figure 3 – Physicien italien, Giovanni Battista Venturi (1746–1822) met en évidence un phénomène
contre-intuitif : lorsqu’un fluide s’écoule dans une conduite à section rétrécie, sa vitesse augmente et sa
pression diminue. Cet effet Venturi illustre concrètement la conservation de l’énergie dans un fluide en
mouvement, tel que formulé plus tard dans la relation de Bernoulli.
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Figure 4 – Mathématicien et physicien suisse, Daniel Bernoulli (1700–1782) établit une relation entre
pression, vitesse et altitude dans un écoulement fluide, connue sous le nom de relation de Bernoulli.
Elle découle du premier principe de la thermodynamique appliqué à un écoulement parfait. Son travail
inaugure l’étude énergétique des fluides en mouvement.

Figure 5 – Mathématicien suisse, Leonhard Euler (1707–1783) applique la mécanique de Newton
aux fluides, formulant les équations d’Euler qui décrivent le mouvement d’un fluide parfait (non
visqueux). Son approche fonde la mécanique des fluides théorique moderne et sert encore de base à
l’aérodynamique.
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Chapitre 1 : Statique des fluides

j Objectifs :

— Citer des ordres de grandeur des dimensions de l’échelle mésoscopique dans le cas des liquides et des
gaz.

— Citer des ordres de grandeur de valeurs de pression dans des situations usuelles.
— Calculer la force de pression s’exerçant sur une surface, la pression étant uniforme.
— Démontrer l’expression de la résultante des forces de pression s’exerçant sur un volume élémentaire

de fluide dans le cas d’une variation unidirectionnelle de la pression. Généraliser sans démonstration
pour une situation quelconque en utilisant l’opérateur gradient.

— Exploiter l’expression générale admise de la force volumique associée aux forces de pression, l’expression
de l’opérateur gradient étant fournie.

— Énoncer et établir la relation de la statique des fluides dans le cas d’un fluide soumis uniquement à la
pesanteur, supposée uniforme.

— Exprimer l’évolution de la pression avec l’altitude dans le cas d’un fluide incompressible. Citer une
application pratique.

— Exprimer l’évolution de la pression avec l’altitude dans le cas d’une atmosphère isotherme assimilée à
un gaz parfait.

— Expliquer l’origine de la poussée d’Archimède. Citer et exploiter l’expression de la poussée d’Archimède.

Rappels sur le lien entre l’intégration et la somme

À une dimension

Soit une fonction f(x) définie sur [a, b] et n ∈ N∗. Posons hn = b − a

n
. Par exemple, pour n = 4 :

f(x)

x
a b

h4
h4

h4
h4

Si l’on cherche à calculer l’aire A sous la courbe de f , on peut « naïvement » approximer la fonction
par une fonction en escalier (voir ci-dessous).

f(x)

x
a

f(a)

a + hn

f(a + hn)

b
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On a alors :
A ≈ f(a) × hn + f(a + hn) × hn + . . . f(a + (n − 1)hn) × hn

Cette approximation est d’autant meilleure que n est grand. Lorsque n → ∞, on a alors hn → 0... sans
pour autant valoir 0 ! On note dès lors dx ce pas d’intégration « infinitésimal » (c’est-à-dire « très petit »).

L’aire A sous la courbe est alors égale à la somme :

A = f(a) × dx + f(a + dx) × dx + . . . + f(b − dx) × dx

On décide de noter cette somme via le symbole 1 :∫ b

a
f(x) dx

qu’il faut lire/comprendre sous la forme :

« Somme des f(x) × dx avec x variant de manière continue entre a et b » 2

Il s’avère que, par le théorème fondamental de l’analyse, cette somme peut se calculer sous la forme
d’une différence de primitive : ∫ b

a
f(x)dx = F (b) − F (a)

avec F une primitive de f . Ce résultat n’est cependant pas la définition de l’intégrale : il s’agit plutôt d’un
moyen facile de déterminer sa valeur numérique !

On dit que cette intégrale est une intégrale à une dimension : on somme les valeurs de f selon l’unique
dimension x.

À deux dimensions
Supposons que l’on connaisse le champ de pressions p(x, y) dans un plan de l’atmosphère.

x|
a

|
a + dx

|
a + 2dx

|
b − dx

|
b

dx
y

−c

−c + dy

−c + 2dy

−d − dy

−d

dy

1. Le symbole de l’intégrale
∫

n’est en réalité rien d’autre qu’un « S » stylisé, représentant justement la Somme.
2. On pourrait me répondre qu’on ne va pas jusqu’à b, mais jusqu’à b − dx... Mais il s’avère que dx tend vers 0, donc

la différence est vraiment négligeable.
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Si l’on souhaite calculer la force totale F s’exerçant sur une plaque contenue dans ce plan (avec x ∈ [a, b]
et y ∈ [c, d]), on peut sommer les forces s’exerçant sur chacune des surfaces infinitésimales dx × dy :

F =

p(a, c) × dxdy + p(a + dx, c) × dxdy + . . . + p(a + b − dx, c) × dxdy
+ p(a, c + dy) × dxdy + p(a + dx, c + dy) × dxdy + . . . + p(a + b − dx, c + dy) × dxdy
+ p(a, c + 2dy) × dxdy + p(a + dx, c + 2dy) × dxdy + . . . + p(a + b − dx, c + 2dy) × dxdy
+ . . . + . . . + . . . + . . .
+ p(a, d − dy) × dxdy + p(a + dx, d − dy) × dxdy + . . . + p(a + b − dx, d − dy) × dxdy

Ce que l’on peut réécrire sous la forme :

F =

∫ b

a
p(x, c)dxdy

+
∫ b

a
p(x, c + dy)dxdy

+
∫ b

a
p(x, c + 2dy)dxdy

+ . . .

+
∫ b

a
p(x, d − dy)dxdy

=
∫ b

a
[p(x, c) + p(x, c + dy) + p(x, c + 2dy) + . . . + p(x, d − dy)] dy︸ ︷︷ ︸∫ d

c
p(x, y)dy

dx

On note alors :
F =

∫ x=b

x=a

∫ y=d

y=c
p(x, y)dxdy

en précisant bien dans les bornes de l’intégrale sur quel domaine opère chaque variable.

Il peut arriver que l’on décider de sommer la pression – par exemple – selon une surface infinitésimale
qui n’est pas rectangulaire, c’est-à-dire qui n’est pas de la forme dxdy. Cette situation arrive notamment
lorsque les problèmes sont à symétrie cylindrique ou sphérique.

On note alors, de manière plus générale, la double intégrale sous la forme :

F =
x

M∈plaque
p(M) dSM

où les bornes de l’intégrale ont été remplacées par la surface physique sur laquelle il faut sommer, et dSM

représente l’aire infinitésimale d’intégration (précédemment, on avait donc dS = dxdy) localisée autour
d’un point M de la plaque. On n’indique en particulier pas de quoi dépend p, car il n’est pas pertinent
d’utiliser les variables x et y si l’on est en coordonnées sphériques, par exemple.

À trois dimensions
Les problèmes précédents peuvent également se poser à trois dimensions. Prenons par exemple la Terre,

que l’on supposera sphérique et constituée de couches concentriques (le noyau interne, le noyau externe, le
manteau inférieur, le manteau extérieur et la croûte).

Ces couches ont des compositions différentes, et donc des masses volumiques µi différentes. Si l’on
cherche à exprimer la masse totale m de la Terre, on va alors écrire :

m =
∑

couches i

µi × Vi

Si l’on cherche à être encore plus précis, on peut tout simplement dire qu’à chaque élément de volume
infinitésimal dVM situé en un point M de la Terre, on peut associer une masse dm = µ(M) ×dVM . Puisque
l’on somme dans trois directions, on note alors que le calcul de la masse totale se fait via une triple intégrale :

m =
y

M∈Terre
µ(M) dVM
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1.1 Actions dans un fluide

1.1.1 Description lagrangienne, description eulérienne
Dans ce thème, nous allons étudier les actions mécaniques au sein des fluides 3 statiques ou en

écoulement. Pour les décrire, on peut essayer de décomposer le fluide en particules fluides, dont les volumes
mésoscopiques dV sont très grands par rapport à l’échelle microscopique, mais très petits par rapport à
l’échelle macroscopique. Chaque méso-volume possède des coordonnées xM (t), yM (t), zM (t), une vitesse
−→vM (t), une pression pM (t), etc. Cette vision des choses est la description lagrangienne d’un fluide.

Si l’on choisit ce point de vue, il ne s’agit alors de rien d’autre qu’un problème de mécanique du point :
si l’on connaît toutes les forces extérieures, on peut appliquer un PFD et conclure. Cependant, un fleuve
possède une infinité de particules fluides, et il faut donc faire une infinité de PFD (et multiplier cette infinité
par 3 pour déterminer le nombre d’équations couplées à résoudre). Cette approche ne nous convient donc
pas ici.

Un autre point de vue est de visualiser le fluide dans sa globalité, au lieu de considérer des particules
fluides se déplaçant dans l’espace et dans le temps. Au lieu de définir, par exemple, la pression de chaque
particule fluide pM (t), on va définir un champ de températures p(x, y, z, t), écrit de manière plus compacte
p(M, t).

Ainsi, au lieu d’avoir une infinité de grandeurs pM (t), on va se limiter à une fonction de plusieurs
variables M (point dans l’espace) et t (temps). Ce raisonnement peut être fait pour différentes grandeurs :
p(M, t) pour la pression, v⃗(M, t) pour la vitesse, etc.

Il vient nécessairement que les dérivées sont à préciser : dériver par rapport à l’abscisse x n’a probablement
rien à voir avec la dérivation temporelle. On écrira donc respectivement ∂v⃗

∂x
ou ∂v⃗

∂t
, où les variables d’espace

et de temps sont toutes les quatre décorrélées les unes par rapport aux autres !
En mécanique des fluides, nous utiliserons de manière systématique cette description des milieux,

appelée description eulérienne. Puisque les mesures ne doivent dépendre que de l’endroit choisi, seule une
description utilisant des grandeurs intensives a du sens : le choix est généralement de prendre des grandeurs
volumiques.

1.1.2 Le poids
Prenons ainsi un élément de volume infinitésimal δV et de masse δm.

Question 1 : Quel est le poids δP⃗ de cette particule fluide ? En déduire le « poids volumique »
−−−→
fpoids

en N/m3.

Force volumique associée au poids

Si l’on note µ(M, t) le champ de masse volumique, la force volumique associée au
poids peut s’écrire : −−−→

fpoids = µ.⃗g

3. Pour rappel, un fluide est un liquide ou un gaz.

ATS – Lycée Louis Armand 8 A. Diet



Thème 7 : Mécanique des fluides

1.1.3 La pression
Nous avons précédemment défini la pression p à partir de la force pressante Fp s’exerçant sur une surface

S : p = Fp

S
. Considérons à présent un élément infinitésimal dV (voir figure 1.1).

(O, y)

(O, z)

(O, x)

dx

dy

dz

z

z + dz

Figure 1.1 – Volume mésoscopique dV = dx × dy × dz.

On suppose que la pression p n’est pas uniforme 4 : elle dépend de l’altitude z. On a donc p = p(z).

Question 2 : Que peut-on dire des pressions respectives des faces gauche, droite, avant et arrière du
volume mésoscopique ? Qu’en déduit-on quant aux composants horizontales des forces de pression ?

Question 3 : Exprimer les forces de pression δ
−−−→
Fhaut et δ

−−→
Fbas s’exerçant respectivement sur les faces

haute et basse du volume mésoscopique.

4. Une grandeur uniforme est une grandeur ne dépendant pas de l’espace. Il ne faut pas la confondre avec une grandeur
constante, qui ne dépend pas du temps.
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On rappelle que la dérivée d’une fonction f au point a est mathématiquement définie par
f ′(a) = lim

h→0

f(a + h) − f(a)
h

.

Question 4 : Montrer que la résultante des forces de pression δ
−→
Fp peut s’écrire en fonction de ∂p

∂z
et

du volume élémentaire dV .

Question 5 : Comment pourrait-on généraliser δ
−→
Fp si la pression dépendait de x, y et z ?

Gradient d’un champ scalaire

Le gradient
−−→
grad F d’un champ scalaire F (x, y, z) vaut :

−−→
grad F ≜

∂F

∂x
.−→ex + ∂F

∂y
.−→ey + ∂F

∂z
.−→ez =



∂F

∂x
∂F

∂y

∂F

∂z


On utilise parfois la « notation nabla a » :

−−→
grad F = −→

∇F où −→
∇ =



∂

∂x
∂

∂y

∂

∂z


a. Le symbole ∇ se prononce « nabla »

¬ Remarque : Le gradient est un opérateur linéaire (
−−→
grad (F + λ.G) =

−−→
grad (F ) + λ.

−−→
grad (G) avec F

et G deux champ scalaires et λ une constante) et qui commute notamment avec la dérivation temporelle
(
−−→
grad

(
∂F

∂t

)
= ∂

∂t

−−→
grad (F )).
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¬ Remarque : Interprétons physiquement ce qu’est le gradient d’un champ F . Si F croît localement selon
la direction (O, x), alors ∂F

∂x
> 0, et ∂F

∂x
.−→ex est dans le même sens que −→ex. En étendant ce raisonnement

aux autres coordonnées, on comprend que
−−→
grad F correspond localement à un vecteur étant orienté des

faibles valeurs de F vers les grandes valeurs de F .

Force volumique associée aux forces de pression

Une particule fluide subit une force volumique résultant de la pression p du fluide environ-
nant. La force volumique associée aux forces de pression s’écrit :

−→
fp = −

−−→
grad p

1.2 Relation de la statique des fluides

1.2.1 Démonstraton
On considère un fluide au repos dans le champ de pesanteur g⃗ (dans la direction z). On note µ la masse

volumique du fluide (pas forcément uniforme), et on s’intéresse particulièrement à un volume mésoscopique
de fluide dV .

Question 6 : Exprimer les forces s’appliquant sur ce volume infinitésimal, puis appliquer le PFD à ce
volume.

Relation de la statique des fluides

Pour un fluide de masse volumique µ au repos dans le champ de pesanteur g⃗, la relation
fondamentale de la statique des fluides énonce que la pression augmente dans la même
direction et le même sens que g⃗ :

−−→
grad p = µg⃗

En particulier :
— Si l’axe z est orienté vers le haut, alors g⃗ = −g.−→ez et on a dp

dz
= −µg ;

— Si l’axe z est orienté vers le bas, alors g⃗ = g.−→ez et on a dp

dz
= µg.
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Question 7 : Que donnent les projections selon x et y ? Est-ce logique au vu des symétries du problème ?

Question 8 : Si g⃗ = −g.−→ez (z orienté vers le haut), que donne la projection selon la direction z ? Et si
g⃗ = g.−→ez (z orienté vers le bas) ?

1.2.2 Résultats immédiats

Lien pression-altitude

Question 9 : Supposons l’axe vertical descendant. p augmente-t-elle ou diminue-t-elle avec la profondeur ?
Est-ce logique ? Donner un exemple.

Question 10 : Supposons l’axe vertical ascendant. p augmente-t-elle ou diminue-t-elle avec l’altitude ?
Est-ce logique ? Donner un exemple.

ATS – Lycée Louis Armand 12 A. Diet
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Question 11 : Observons le système en figure 1.2, rempli d’un fluide au repos. Que peut-on dire des
pressions en A, en B et en C ? Justifier.

+
A

+
B

+
C

Figure 1.2 – Récipient rempli d’un même fluide.

Pression et altitude dans un fluide

La pression dans un fluide au repos ne dépend que de l’altitude du point considéré ; elle
diminue avec l’altitude, et augmente avec la profondeur.
En particulier, le fluide au repos n’est à pression atmosphérique patm que pour une altitude
z = cste correspondant à la surface libre fluide-atmosphère.

¬ Remarque : Attention à ne pas aller trop vite dans les conclusions s’il y a deux fluides ! Dans ce cas,
z = cste ne signifie pas forcément qu’on est à la même pression (imaginez l’intérieur et l’extérieur d’une
cuve remplie d’eau).
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Conséquences pour un fluide incompressible

Un fluide incompressible ne change pas de volume lorsque la pression augmente. Nécessairement, cela
signifie que la masse volumique µ est indépendante de la pression, et donc uniforme s’il n’y a pas de gradient
de température.

Question 12 : On suppose l’axe vertical ascendant. À l’aide de la relation fondamentale de l’hydrostatique,
exprimer p(z) en fonction de µ, g, z et p0 ≜ p(z = 0).

Question 13 : Même question pour un axe vertical descendant.

Pression et altitude dans un fluide incompressible

Soit un fluide incompressible et au repos de masse volumique uniforme µ. La différence de
pression pB − pA entre deux points est proportionnelle à la dénivellation zB − zA entre
ces deux points :

pB − pA = ±µg(zB − zA)

Le signe + indique un axe vertical descendant ; le signe − indique un axe vertical ascendant.
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Thème 7 : Mécanique des fluides

z

−A 50 m

−B 80 m

zB − zA

z

−A 20 m

−B −10 m

zA − zB

Figure 1.3 – À gauche, la distance entre les deux points est zB−zA ; à droite, la distance est zA−zB . Les
applications numériques donnent logiquement le même résultat : à gauche, zB −zA = 80 m−50 m = 30 m,
et à droite, zA − zB = 20 m − (−10 m) = 30 m. Puisque la pression augmente avec la profondeur,
on a toujours pA > pB. On en déduit qu’à gauche : pA = pB + µg(zB − zA), alors qu’à droite :
pA = pB + µg(zA − zB).

1.3 Applications

1.3.1 Barrage
Prenons l’exemple d’un barrage permettant de contenir l’eau (au repos) d’un réservoir. On prend un axe

vertical descendant, dont l’origine correspond à la surface libre de l’eau (voir figure 1.4).
On note patm = 1,0 × 105 Pa la pression atmosphérique, z la profondeur d’un point M quelconque du

fluide et µ = 1,0 × 103 kg · m−3 la masse volumique uniforme de l’eau. Le barrage a une largeur L = 50 m
selon la direction y, et l’eau va jusqu’à une profondeur h = 10 m.

(O, z)

−z = 0

z = h
x

⊙•
y

⊙•
L

Figure 1.4 – Modélisation d’un barrage vu en coupe.

L’objectif est de calculer la force pressante F qu’exerce l’eau sur le mur du barrage.
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Question 14 : Soit un point M contenu dans l’eau. Exprimer la pression p en M en fonction des
données de l’énoncé.

Question 15 : La pression dans l’eau dépend-elle de la longueur du barrage selon la direction x ?

Question 16 : Exprimer la force pressante élémentaire δF s’exerçant sur une surface infinitésimale
dydz du mur du barrage en fonction des données de l’énoncé et de la surface élémentaire.

Question 17 : En déduire, par une double intégrale, l’expression de F .

¬ Remarque : Quand on a une invariance selon une direction de l’espace (ici y), on peut directement
dire que l’élément de surface est L dz, ce qui donne une intégrale simple à calculer et non plus double. Il
faut retenir l’astuce...
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Question 18 : Faire l’application numérique.

1.3.2 Atmosphère isotherme
Considérons une atmosphère isotherme (T = 273 K) dans le champ de pesanteur terrestre g⃗ sup-

posé uniforme, même à grande altitude. L’atmosphère est modélisée par un gaz parfait de masse molaire
M = 29 g · mol−1. On note µ la masse volumique de l’atmosphère (qui n’est plus uniforme : c’est un gaz,
donc compressible !), et on choisit un axe vertical ascendant. p0 représente l’altitude en z = 0.

Question 19 : Rappeler la loi des gaz parfaits. Montrer qu’on peut l’écrire sous la forme « intensive » :
M × p = µ × R × T .

Question 20 : En isolant µ dans l’expression précédente et en utilisant la relation de l’hydrostatique,
montrer que l’on a : dp

dz
+ 1

λ
× p = 0. Donner l’expression et la valeur de λ.
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Question 21 : Résoudre l’équation différentielle précédente, en utilisant la condition aux limites en
z = 0.

Question 22 : En déduire l’expression de µ(z).

1.3.3 Poussée d’Archimède
Considérons un corps macroscopique immergé 5 au moins partiellement dans un fluide de masse volumique

µfluide. On note Vimm le volume immergé.

Question 23 : Montrer que la résultante des forces de pression que le fluide extérieur exerce sur l’objet
peut s’écrire −µfluideVimmg⃗.

5. Un ballon dans l’air, un bateau flottant sur l’eau...
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Poussée d’Archimède

La poussée d’Archimède −→ΠA est la force que subit un corps placé entièrement ou
partiellement dans un fluide et soumis à un champ de gravité. Cette force provient de la
variation de la pression du fluide avec la profondeur ou l’altitude : la pression étant plus
forte sur la partie inférieure d’un objet immergé que sur sa partie supérieure, il en résulte
une poussée globalement verticale ascendante.

Un corps ayant un volume Vimm immergé dans un fluide de masse volumique µfluide subira
donc la force : −→ΠA = −µfluideVimmg⃗

où g⃗ représente le champ de pesanteur.

Question 24 : On formule parfois le théorème d’Archimède ainsi : « Tout corps plongé dans un fluide
au repos [...] subit une force [...] opposée au poids du volume de fluide déplacé ». Justifier cette formulation.

Outils mathématiques

Périmètre d’un cercle

Le périmètre d’un cercle de rayon R est 2πR.

Aire d’un disque

L’aire d’un disque de rayon R est πR2.

Aire de la paroi latérale d’un cylindre

L’aire de la paroi latérale d’un cylindre de hauteur h et de rayon R est 2πRh.

Aire d’une sphère

L’aire d’une sphère de rayon R est 4πR2.

Volume d’un cylindre

Le volume d’un cylindre de hauteur h de rayon R est πR2h.

Volume d’une boule

Le volume d’une boule de rayon R est 4
3πR3.
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Questions de cours

À cocher quand vous savez y répondre par vous-même...

□ Donner l’expression du gradient
−−→
grad F d’un champ scalaire F (x, y, z). Quelle est l’interprétation

géométrique de
−−→
grad F ?

□ Démontrer l’expression de la résultante des forces de pression s’exerçant sur un volume élémentaire
de fluide dans le cas d’une variation unidirectionnelle de la pression. Généraliser sans démonstration
pour une situation quelconque en utilisant l’opérateur gradient.

□ Établir la relation de la statique des fluides. En déduire les expressions de dp

dz
selon le sens de l’axe

vertical.
□ Pour un fluide incompressible, que peut-on dire de la masse volumique µ ? En déduire une expression

simple de pA − pB en fonction de µ, g, zA et zB, où A et B sont deux points quelconques du fluide.
□ À l’aide de la relation fondamentale de la statique des fluides, établir l’expression de p(z) dans une

atmosphère isotherme assimilée à un gaz parfait. Déterminer la longueur caractéristique L de variation
de la pression.

□ Donner l’expression de la poussée d’Archimède, et expliquer son origine.
□ Rappeler les expressions du périmètre d’un cercle, de l’aire d’un disque, de l’aire de la paroi latérale

d’un cylindre, de l’aire d’une sphère, du volume d’un cylindre et du volume d’une boule.
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Chapitre 2 : Description d’un fluide en écoulement

j Objectifs :

— Décrire les propriétés thermodynamiques et mécaniques d’un fluide à l’aide des grandeurs locales
pertinentes.

— Représenter les lignes de courant d’un champ de vitesses uniforme et stationnaire.
— Analyser des vidéos, des simulations ou des cartographies d’écoulement.
— Réaliser un bilan de masse ou de volume sur une portion de fluide, les débits étant connus.
— Montrer que dans un écoulement stationnaire, le débit massique se conserve le long d’un tube de

courant ; exploiter cette propriété.
— Montrer que, dans un écoulement de fluide incompressible, le débit volumique se conserve le long

d’un tube de courant ; exploiter cette propriété.
— Exprimer les débits volumique et massique pour un écoulement unidirectionnel uniforme.
— Calculer le débit volumique (resp. : massique) du fluide à travers une surface quelconque à l’aide du

flux du vecteur vitesse (resp. : vecteur densité courant de masse), considéré comme uniforme.
— Exploiter qualitativement la topographie des lignes de courant pour prévoir les variations de la norme

du vecteur vitesse le long des tubes de courant.
— Démontrer l’équation locale de conservation de la masse dans un écoulement de fluide unidirectionnel.

Généraliser au cas tridimensionnel.
— Exploiter l’expression fournie de l’opérateur divergence.
— Montrer que la divergence du champ des vitesses d’un fluide incompressible est nulle en tout point.

2.1 Champ des vitesses

Ligne de courant

On appelle ligne de courant la trajectoire d’une particule fluide dans un écoulement. Il
s’agit donc d’une ligne orientée et tangente en tout point au champ des vitesses v⃗(M, t).

Figure 2.1 – Lignes de courant théoriques autour d’une aile. By Michael Belisle - Own work, Public
Domain, https ://commons.wikimedia.org/w/index.php ?curid=3932235
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Figure 2.2 – Lignes de courant expérimentales autour d’une aile, selon l’angle d’attaque. Photographies
issues de How do wings work ?, DOI :10.1088/0031-9120/38/6/001

Tube de courant

Un tube de courant est une surface ouverte a fictive définie par la réunion de lignes de
courant s’appuyant sur un contour fermé.

a. Cela signifie qu’il y a au moins un « trou » dans la surface ; ici, il y a une frontière d’entrée et
une frontière de sortie.

¬ Remarque : Par définition, la vitesse orthogonale à la frontière est nulle et il n’y a donc pas de fluide
traversant les parois latérales ce tube, ce qui justifie que les particules fluides y soient confinées (voir figure
2.3 : le champ de vitesse est toujours tangent à la paroi latérale du tube de courant).

Figure 2.3 – Tube de courant partant d’un contour fictif C1 pour finir sur un contour fictif C2. Par
Twisp — Travail personnel (Image based on now-deleted File :Streamlines and streamtube.png)Cette
image vectorielle SVG non W3C-spécifiée a été créée avec Inkscape ., Domaine public, https ://com-
mons.wikimedia.org/w/index.php ?curid=3475420

ATS – Lycée Louis Armand 22 A. Diet



Thème 7 : Mécanique des fluides

Intermède mathématique : flux d’un champ

Considérons un champ des vitesses orienté selon un vecteur unitaire −→ux : −→v = v0.−→ux. Supposons que
l’on ait à disposition un capteur plan sensible à ce champ des vitesses ; on note S la surface du capteur et
−→n le vecteur orthogonal à celui-ci.

Plusieurs situations sont alors possibles :

−→n

−→n −→n

Figure 2.4 – Positions possibles du capteur (gris, rectangulaire) vis-à-vis du champ des vitesses (lignes
de courant en rouge).

Question 1 : Comment orienter le capteur −→n par rapport au champ de direction −→ux pour capter un
maximum de ce champ ? Un minimum de ce champ ?

Flux d’un champ uniforme à travers une surface plane

Le flux ΦA d’un champ −→
A uniforme à travers une surface plane S orientée par un vecteur

unitaire −→n vaut :
ΦA = −→

A · S.−→n

En notant −→
S ≜ S.−→n la surface orientée, on peut réécrire cette équation :

ΦA = −→
A ·

−→
S

¬ Remarque : Le signe du flux dépend donc de la façon dont on oriente la surface S via le vecteur −→n .
Il faudra donc retenir, selon les différents théorèmes vus au long de l’année, comment ce vecteur normal est
défini !

On peut également calculer le flux d’un champ à travers une surface non plane. Effectivement, sous
certaines hypothèses mathématiques très raisonnables en physique, on peut considérer qu’une surface
macroscopiquement courbe « suffisamment régulière » est mésoscopiquement plane (voir figure 2.5).

Ainsi, on peut découper la surface S macroscopique totale en surfaces mésoscopiques dSM plans centrés
autour d’un point M parcourant la surface : S =

x

M∈S

dS(M). On associe également à chaque surface

infinitésimale un vecteur
−−−→
n(M) localement normal.
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Figure 2.5 – Planéité locale de la matière.

Finalement, le flux total du champ des vitesses est la somme (continue, donc avec une intégrale) de
chacune des contributions mésoscopiques dΦv(M) = −→v (M) · dS(M).

−−−→
n(M) = −→v (M) · d

−−−→
S(M).

Flux d’un champ à travers une surface quelconque

Le flux ΦA d’un champ −→
A à travers une surface S quelconque vaut :

ΦA =
x

M∈S

−→
A (M) · d

−−−→
S(M)

Question 2 : Si −→v (M) est uniforme sur la surface d’intégration et orthogonale à celle-ci en tout point,
comment se simplifie l’équation du flux ?

Il peut arriver que la surface d’intégration soit fermée, c’est-à-dire qu’elle ne soit « percée » d’aucun
trou. Pour signifier que l’on « retombe sur nos pattes », on note alors l’intégrale avec un cercle :

ΦA =
{

M∈S

−→
A (M) · d

−−−→
S(M)
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2.2 Débits

2.2.1 Débit massique

Vecteur densité de masse

Soit un déplacement de particules fluides dans l’espace. On note respectivement µ(M, t)
et v⃗(M, t) la masse volumique et la vitesse eulériennes de l’écoulement.
On définit alors le vecteur densité (volumique) de masse J⃗ comme :

J⃗ = µ.v⃗

Il représente grossièrement à quel point « beaucoup de matière » arrive « très vite » en un
point.

Question 3 : Déterminer l’unité SI de J⃗ .

Débit massique

Soit un fluide en écoulement, dont le vecteur densité de masse est noté J⃗ . Le débit
massique de cet écoulement à travers une surface S est égal au flux du vecteur densité
de masse à travers cette surface :

Dm =
x

M∈S
J⃗(M) · d−→

SM

d−→
SM

J⃗(M)

Le débit massique s’exprime en kg · s−1.

¬ Remarque : On choisit généralement l’orientation de S telle que le débit massique soit positif.

On suppose l’écoulement uniforme sur la surface d’intégration S, qui est orthogonale à la section de
l’écoulement.

Question 4 : Comment se simplifie l’expression du débit massique ?
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Question 5 : On attend une durée ∆t ; les particules fluides initialement aux niveau de S se situent à
une distance L de celle-ci. Quel est le lien entre v, L et ∆t ?

Question 6 : En déduire une relation entre Dm, ∆t et la masse évacuée ∆M pendant cette durée.

Autre vision du débit massique

Le débit massique d’un écoulement peut s’interpréter comme la masse du fluide débitée
par unité de temps :

Dm = ∆M
∆t

2.2.2 Débit volumique

Débit volumique

Soit un fluide en écoulement, dont le champ des vitesses est noté v⃗. Le débit volumique
de cet écoulement à travers une surface S est égal au flux de la vitesse à travers cette
surface :

Dv =
x

M∈S
v⃗(M) · d−→

SM

Le débit volumique s’exprime en m3/s.
Si le champ de vitesse est uniforme sur la section S d’intégration, on a alors Dv = v × S.

¬ Remarque : On choisit généralement l’orientation de S telle que le débit volumique soit positif.

Écoulement homogène

Un écoulement est homogène si la masse volumique µ du fluide est uniforme, c’est-à-dire
si elle est identique en tout point de l’écoulement.

Écoulement incompressible

Un écoulement est incompressible si la masse volumique µ du fluide est uniforme et
constante, c’est-à-dire si elle est identique en tout point et à tout instant de l’écoulement.
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Question 7 : Un écoulement stationnaire et homogène est-il incompressible ? Justifier.

Question 8 : Établir une relation simple entre le débit massique et le débit volumique pour un écoulement
incompressible.

Lien entre débit massique et débit volumique pour un écoulement incompressible

Pour un écoulement incompressible, le débit massique Dm et le débit volumique Dv sont
proportionnels :

Dm = µ × Dv

avec µ la masse volumique du fluide.

¬ Remarque : On peut retenir cette relation uniquement à l’aide des unités : 1 kg ·s−1 = 1 kg/m3×m3/s.

Autre vision du débit volumique

Le débit volumique d’un écoulement peut s’interpréter comme le volume du fluide débité
par unité de temps :

Dv = ∆V

∆t
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2.3 Lois de conservation

2.3.1 Conservation de la masse
Supposons un écoulement quelconque, et choisissons une surface S fermée quelconque. On sépare dans

l’idée cette surface fermée en deux surfaces ouvertes : Se, qui correspond aux zones de S où l’écoulement
entre, et Ss, qui correspond aux zones de S où l’écoulement sort.

On note M(t) la masse de ce système à l’instant t.

d
−−→
Sext

e

−→
Je

d
−−→
Sext

s

−→
Js

Figure 2.6 – Surface de contrôle étudiée.

Question 9 : Exprimer la masse δMe entrant dans le système pendant une durée infinitésimale dt en
fonction de Dm,e, débit massique entrant. De même, exprimer la masse δMs sortant du système pendant
cette durée dt en fonction de Dm,s, débit massique sortant.

Question 10 : Justifier que δMe − δMs = M(t + dt) − M(t). En divisant cette équation par dt,
déterminer une équation liant M(t) et les débits massiques.
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Équation intégrale de conservation de la masse

Soit un fluide en écoulement dans un système Σ, dont on note la masse au cours du temps
M(t). La masse se conservant, on a :

dM
dt

= Dm,e − Dm,s

où Dm,e et Dm,s sont les débits massiques respectivement entrant et sortant du système.

Écoulement stationnaire

Un écoulement fluide est dit stationnaire si les grandeurs eulériennes le décrivant ne
dépendent pas du temps.

¬ Remarque : Attention à ne pas confondre fluide à écoulement stationnaire et fluide statique ! Le premier
impose que ∂v⃗

∂t
= 0⃗ (donc que la vitesse ne dépend pas du temps), alors que le second impose que v⃗ = 0⃗ en

tout point du fluide. Un fluide statique est un cas particulier de fluide stationnaire, mais l’inverse n’est pas vrai.

Question 11 : En régime stationnaire, que peut-on dire de la masse de fluide M présente dans le tube
de courant ? Que peut-on en conclure quant aux débits massiques d’entrée et de sortie ?

Conservation du débit massique

Pour un écoulement stationnaire, le débit massique se conserve : Dm,e = Dm,s.

On étudie désormais un méso-volume cylindrique de section S et de longueur infinitésimal dx (voir
figure 2.7). L’objectif est d’obtenir une relation similaire à l’équation intégrale de conservation de la masse
mais à une échelle locale.

On note J⃗(x, t) le vecteur densité de masse en une abscisse x et à un instant t, que l’on suppose
uniforme sur une même section. La masse volumique du tronçon est notée µ(x, t).

x x + dx

J⃗(x, t) J⃗(x + dx, t)

Figure 2.7 – Méso-volume avec une entrée et une sortie de fluide.
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Question 12 : Exprimer la masse δM(t) du tronçon à un instant t en fonction de µ(x, t), S et dx.

Question 13 : Exprimer la masse δMe de fluide entrant dans le tronçon pendant une durée infinitésimale
dt en fonction de J(x, t), S et dt. De même, exprimer la masse δMs de fluide sortant du tronçon pendant
cette même durée.

Question 14 : Par conservation de la masse, quel lien peut-on établir entre δMe, δMs, δM(t) et
δM(t + dt) ? En déduire une équation liant J et µ.

Question 15 : Si l’écoulement était tridimensionnel et pas uniquement selon l’axe horizontal, comment
se généraliserait l’équation précédente ?

Divergence d’un champ vectoriel

La divergence div −→
A d’un champ vectoriel −→

A = Ax.−→ex + Ay.−→ey + Az.−→ez vaut :

div −→
A ≜

∂Ax

∂x
+ ∂Ay

∂y
+ ∂Az

∂z

En « écriture nabla », on a donc :

div −→
A = −→

∇ ·
−→
A

¬ Remarque : La divergence est un opérateur linéaire (div
(−→
A1 + λ.

−→
A2

)
= div −→

A1 + λ × div −→
A2) et

qui commute notamment avec la dérivation temporelle.
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La divergence d’un champ vectoriel est un scalaire 1 dépendant du point M de l’espace où on le calcule.
Il est négatif si le champ « rentre davantage que ce qu’il ne sort » d’un volume localisé autour du point M
considéré, et positif si le champ « sort davantage que ce qu’il ne rentre ».

Équation locale de conservation de la masse

Soit un fluide de masse volumique µ et de vecteur densité de masse J⃗ . Le fait que la
masse se conserve localement s’écrit, mathématiquement :

∂µ

∂t
+ div J⃗ = 0

2.3.2 Conservation du débit volumique
On suppose que l’écoulement est incompressible : µ est uniforme et les grandeurs eulériennes ne dé-

pendent pas du temps.

Question 16 : Réécrire l’équation de conservation du débit massique en fonction des vitesses et des
sections d’entrée et de sortie.

Conservation du débit volumique

Pour un écoulement incompressible, le débit volumique se conserve : Dv,e = Dv,s. On
peut écrire cette équation en fonction des vitesses et des sections : ve × Se = vs × Ss.

Considérons l’écoulement d’un fluide dans un tube de courant dont la section diminue brièvement (figure
2.8). La vitesse sur une même section est considérée uniforme, et l’écoulement est incompressible. On note
SA la section de la conduite en A, et SB la section de la conduite en B.

+A +B

Figure 2.8 – Rétrécissement de la section d’un tube de courant.

1. C’est-à-dire un nombre, et non pas un vecteur.

ATS – Lycée Louis Armand 31 A. Diet



Thème 7 : Mécanique des fluides

Question 17 : Exprimer les débits volumiques en A et en B. Justifier l’égalité de ces deux grandeurs.

Question 18 : A-t-on vA > vB ou vB > vA ? Quel lien peut-on alors faire entre le rapprochement de
lignes de courant et la vitesse du fluide ?

Topographie des lignes de courant et lien avec la vitesse

Pour un écoulement incompressible, un rétrécissement de la section d’un tube de courant,
et donc un rapprochement des lignes de courant, indique une augmentation locale de la
vitesse d’écoulement du fluide.

Question 19 : Que devient l’équation locale de conservation de la masse pour un écoulement incom-
pressible ?

Champ des vitesses d’un écoulement incompressible

La divergence du champ des vitesses d’un écoulement incompressible est nul en tout point :

div v⃗ = 0
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Questions de cours

À cocher quand vous savez y répondre par vous-même...

□ Définir le débit massique et le débit volumique. Donner leurs unités SI respectives.
□ Montrer que dans un écoulement stationnaire (respectivement : incompressible), le débit massique

(respectivement : le débit volumique) se conserve le long d’un tube de courant.
□ Énoncer puis démontrer l’équation locale de conservation de la masse dans un écoulement de fluide

unidirectionnel. Généraliser au cas tridimensionnel.
□ Montrer que la divergence du champ des vitesses d’un fluide incompressible est nulle en tout point.
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Chapitre 3 : Énergétique d’un fluide en écoulement

j Objectifs :

— Caractériser un écoulement parfait.
— Établir et exploiter la relation de Bernoulli à partir du premier principe de la thermodynamique appliqué

à un système ouvert pour un écoulement parfait, incompressible et stationnaire entre deux points
situés sur une même ligne de courant.

— Modifier la relation de Bernoulli afin de tenir compte de la dissipation d’énergie mécanique lors de
l’écoulement.

— Exploiter le premier principe de la thermodynamique appliqué à un système ouvert pour effectuer un
bilan de puissance dans une conduite pouvant contenir une pompe ou une turbine.

3.1 Relation de Bernoulli

3.1.1 Notations et hypothèses
On s’intéresse, dans cette partie, à un fluide en écoulement stationnaire (aucune variable eulérienne ne

dépend de t). On note µ la masse volumique du fluide, considéré comme incompressible (µ ne dépend
donc ni du temps, ni de l’espace : µ = cste).

L’écoulement est considéré comme parfait : il n’y a aucune chaleur échangée, et donc pas d’effets de
viscosité ou de conduction de chaleur. Il vient alors que la température T est constante.

Le fluide n’est, de plus, soumis qu’à son poids et aux forces de pression.
On note v⃗ le champ des vitesses, g⃗ = −g.−→ez l’accélération de la pesanteur (la direction z est donc

ascendante ici) et p le champ de pression.

3.1.2 Établissement de la relation
Question 1 : Rappeler le premier principe de la thermodynamique en système ouvert, exprimé en termes

d’énergie. Sous quelle condition est-il valable ?

Question 2 : Rappeler les expressions de ∆ep, variation d’énergie potentielle massique de pesanteur, et
∆ec, variation d’énergie cinétique massique.
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Question 3 : Montrer que, dans les hypothèses de l’énoncé, on a ∆h = ∆p

µ
.

Question 4 : Dans les hypothèses de l’énoncé, que valent le travail utile massique wu et le transfert
thermique massique q ?

Question 5 : Déduire des questions précédentes une relation liant la pression, l’altitude et la vitesse du
fluide sur une même ligne de courant.

Relation de Bernoulli

Soit un fluide parfait, incompressible et soumis uniquement à son poids et aux forces de
pressions considéré en écoulement stationnaire. La quantité X = p + µgz + 1

2µv2, que
l’on appelle la charge hydraulique, se conserve sur une ligne de courant. En d’autres
termes, si A et B sont sur une même ligne de courant, alors :

pA + µ g zA + 1
2µ v2

A = pB + µ g zB + 1
2µ v2

B

¬ Remarque : Les hypothèses du relation de Bernoulli sont régulièrement demandées aux concours,
que ce soit à l’écrit ou à l’oral.

¬ Remarque : p est parfois appelée « pression statique », car elle correspond à la pression dont on se
fait l’idée dans le cas de l’hydrostatique. 1

2µv2 est alors la « pression dynamique » : elle correspond à la
pression « ressentie » face à un écoulement d’air ou un jet d’eau suffisamment puissant.
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3.2 Applications

3.2.1 Effet Venturi
Considérons l’écoulement d’un fluide dans une conduite dont la section diminue brièvement (figure 3.1).

La vitesse sur une même section est considérée uniforme. L’écoulement est parfait, stationnaire et le fluide
est incompressible. On note SA la section de la conduite en A, et SB la section de la conduite en B.

+A +B

Figure 3.1 – Illustration de l’effet Venturi.

Question 6 : Exprimer le débit volumique au point A et au point B. Quelles hypothèses permet
d’égaliser ces deux expressions ?

Question 7 : Appliquer la relation de Bernoulli entre les points A et B. Montrer alors que pB < pA.

¬ Remarque : Un rétrécissement de section entraîne une augmentation de la vitesse mais une diminution
de la pression, ce qui peut paraître paradoxal.

¬ Remarque : Si les lignes de champ des vitesses se resserrent, on a donc un abaissement de la pression.
À retenir pour certains exercices où ces lignes apparaissent !
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3.2.2 Vidange de Torricelli
Soit une cuve cylindrique de section S remplie d’un fluide de masse volumique µ. Un tuyau de section

s ≪ S permet de faire la vidange de la cuve. On note H la hauteur d’eau, A un point de la surface libre et
B un point du tuyau en contact avec l’extérieur, tels que A et B font partie d’une même ligne de courant
(voir figure 3.2).

A

B

+

+−

H

Figure 3.2 – Vidange d’une cuve.

Question 8 : Par conservation du débit, montrer que vA ≪ vB. Quelle conséquence cela amène-t-il sur
l’écoulement ?

Question 9 : Que valent les pressions en A et en B ? Justifier.
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Question 10 : Appliquer la relation de Bernoulli entre A et B. En déduire la vitesse d’écoulement en B
en fonction notamment de la hauteur d’eau H.

3.2.3 Tube de Pitot
Une sonde de Pitot est un dispositif, dont la taille fait quelques centimètres, et qui permet de déterminer

la vitesse v d’un appareil (tel un avion) à partir de mesures de pressions.

ps pt

• ••

•

B0

B

A0 A

Figure 3.3 – Sonde de Pitot.

On négligera dans ce problème toute variation de hauteur. Les points A0 et B0 sont suffisamment
proches l’un de l’autre et suffisamment éloignés de la sonde pour affirmer que la pression et la vitesse en
ces points sont égales. Du point de vue de la sonde, la vitesse en ces points est égale à −v. A est un point
d’arrêt : l’air, cherchant à s’échapper dans toutes les directions, a en moyenne une vitesse nulle en ce point.

On supposera l’air comme gaz incompressible, et l’écoulement comme stationnaire et parfait.

Question 11 : Appliquer la relation de Bernoulli sur les deux lignes de courants. En déduire une relation
entre ps, pt, et vB. Isoler vB.
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3.3 Relation de Bernoulli généralisée

3.3.1 Actions de pompes ou de turbines
On reprend les hypothèses de la relation de Bernoulli, en en changeant cependant une : on suppose que

le fluide reçoit une puissance utile Pu entre l’entrée et la sortie (positive si une pompe fournit effectivement
cette puissance, négative si la puissance est cédée à une turbine).

Question 12 : Montrer, en reprenant le premier principe de la thermodynamique en système ouvert,
que XS − XE = Pu

Dv
, où Dv est le débit volumique.

Prise en compte de pièces mécaniques mobiles

Soit un fluide parfait, incompressible et soumis à son poids et aux forces de pressions
considéré en écoulement stationnaire. Le fluide reçoit de plus, au cours de son écoulement,
une puissance utile Pu de la part de l’extérieur. Si A et B sont sur une même ligne de
courant, alors :

pB + µ g zB + 1
2µ v2

B = pA + µ g zA + 1
2µ v2

A + Pu

Dv

Question 13 : Supposons que l’on veuille dimensionner une pompe pour qu’elle élève de l’eau d’une
hauteur H = 10 m à un débit volumique Dv = 20 L · min−1. Le conduit de transport a une section
S = 150 cm2 ; la sortie et l’entrée sont à la pression atmosphérique. Déterminer la puissance P à apporter à
la pompe pour qu’elle fonctionne en respectant ce cahier des charges.
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3.3.2 Pertes de charge
La modélisation utilisée pour l’établissement du relation de Bernoulli est bien évidemment idéale : il n’y

a pas de pertes énergétiques considérées le long d’une ligne de courant. En réalité, les forces de viscosité
existent, et le fluide peut être au contact de pièces mobiles. On sépare les dissipations selon deux catégories :

— Les pertes de charge régulières : elles correspondent aux pertes dues aux effets de viscosité au niveau
des parois. Comme leur nom l’indique, ces pertes ont lieu en tout point des parois : plus la canalisation
sera longue, plus les pertes de charge le seront (et ce de manière proportionnelle) ;

— Les pertes de charge singulière : elles correspondent aux pertes dues aux changements de géométrie
des parois (rétrécissement, coude...). Comme leur nom l’indique, ces pertes n’ont lieu qu’au niveau du
changement de géométrie.

Ces pertes sont qualifiées « de charge » car elles correspondent à l’écart de charge X ≜ p + µgz + 1
2µv2

entre l’amont 1 et l’aval 2. X étant homogène à une pression, on note généralement les pertes de charge
∆p > 0 (même si elles ne correspondent pas forcément à un écart de pression pour le fluide) ; l’unité est
donc le pascal Pa. Il vient alors que Xaval = Xamont − ∆p.

Prise en compte des pertes de charge dans la relation de Bernoulli

Soit un fluide incompressible et soumis à son poids et aux forces de pressions considéré en
écoulement stationnaire. Si A et B sont sur une même ligne de courant, et que ∆pAB est
la perte de charge entre ces deux points alors :

pB + µ g zB + 1
2µ v2

B = pA + µ g zA + 1
2µ v2

A − ∆pAB

Question 14 : On reprend l’exercice précédent de la pompe. On a des pertes de charge régulières de
k = 20 Pa · m−1, avec une longueur totale de canalisation de L = 500 m. Déterminer quelle est la nouvelle
puissance de pompe P ′ nécessaire.

1. C’est-à-dire en entrée de l’écoulement.
2. C’est-à-dire en sortie de l’écoulement.
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Questions de cours

À cocher quand vous savez y répondre par vous-même...

□ Établir la relation de Bernoulli à partir du premier principe de la thermodynamique appliqué à un
système ouvert pour un écoulement parfait, incompressible et stationnaire entre deux points situés sur
une même ligne de courant.

□ Énoncer la relation de Bernoulli ainsi que toutes ses hypothèses.
□ (Exercice de l’effet Venturi) Soit un écoulement stationnaire et incompressible d’un fluide parfait dans

une canalisation horizontale. Montrer qu’un rétrécissement de section induit une modification de la
pression.

□ (Exercice de la vidange de Torricelli) Soit une cuve se vidant par le bas. Le fluide contenu dans la
cuve est parfait et incompressible, et le niveau d’eau en haut de la cuve est constant. On note H la
dénivellation entre le haut de la cuve et sa sortie. Déterminer la vitesse v de l’écoulement en sortie.

□ Soit un fluide incompressible en écoulement stationnaire ; I et F sont deux points d’une même ligne
de courant, avec I en amont et F en aval. Au cours de l’écoulement, il y a une perte de charge totale
∆p et une pompe de puissance P. Énoncer la relation de Bernoulli généralisée dans ce cas de figure.
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