
Circuits électriques en régime sinusoïdal forcé

1 Dipôles en régime sinusoïdal forcé

■ À revoir ■ Maîtrisé

1 Décomposition d’un signal périodique

Un signal périodique s(t) de pulsation ω peut toujours se décomposer comme somme de
sinusoïdes de pulsations ω, 2ω, 3ω, ... :

s(t) =
∞∑

n=0

Sn cos(nωt + φn)

s(t)

s1(t)

s2(t)

s3(t)

t

t

t

t

S1 = 0,8 V

S2 = 0,5 V

S3 = 0,2 V

Les amplitudes Sn et déphasages φn dépendent de la forme du signal s(t).

Le spectre d’un signal périodique est la représentation graphique des différentes fréquences
le constituant. Un trait vertical correspond à la présence d’une fréquence donnée par l’abscisse ;
la longueur de ce trait correspond à l’amplitude de cette fréquence.

La raie présente à la pulsation ω du signal correspond au fondamental ; les autres raies sont
appelées harmoniques (la n-ième raie est l’harmonique de rang n).

Ainsi, le spectre du signal s(t) représenté ci-dessus est :

ω

amplitude

ω 2ω 3ω

S1

S2

S3
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2 Notation complexe

Supposons qu’une grandeur électrique f(t) soit soumis à une excitation sinusoïdale e(t) =
E cos(ωt).

Si l’on attend « suffisamment de temps », c’est-à-dire en régime permanent, cette grandeur
oscillera à la même pulsation ω que l’excitation : f(t) = F cos(ωt + φ). Son amplitude F et
son déphasage φ sont cependant a priori inconnus.

On associe à un signal réel f(t) = F cos(ωt + φ) une grandeur complexe f(t), définie par :

f(t) = F ej(ωt+φ) = F ejωt

avec F = F ejφ l’amplitude complexe du signal f(t).
On a donc F = |F | et φ = arg F .

On en déduit que :

• Dériver n fois un signal f(t) correspond à le multiplier par (jω)n dans sa représentation
complexe. En particulier :

df

dt
(t) ↔ jωf(t) et d2f

dt2 (t) ↔ (jω)2f(t) = −ω2f(t)

• Intégrer n fois un signal f(t) correspond à le diviser par (jω)n dans sa représentation
complexe. En particulier : ∫

f(t)dt ↔
f(t)
jω

Cette représentation permet de déterminer la solution particulière (c’est-à-dire la solution en
régime permanent, une fois que le régime transitoire est dépassé) d’une équation différentielle
linéaire d’ordre quelconque.

♥ L’expression de la solution homogène, c’est-à-dire celle de la solution en régime transitoire,
est déjà connue : c’est ce qui a été étudié dans le thème 1 !
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3 Impédance complexe

On appelle impédance (complexe) Z d’un dipôle la constante de proportionnalité entre la
tension complexe u aux bornes de ce dipôle et l’intensité complexe i traversant ce dipôle, en
convention récepteur :

u = Z × i

Cette relation est la loi d’Ohm complexe.

— Pour une résistance R, l’impédance complexe est réelle et vaut ZR = R . Il n’y a pas de
déphasage entre u et i ;

— Pour une inductance L, l’impédance complexe est imaginaire pure et vaut ZL = jLω . Il
y a un déphasage de π/2 entre u et i : la tension a une avance sur le courant d’un quart
de période ;

— Pour une capacité C, l’impédance complexe est imaginaire pure et vaut ZC = 1
jCω

. Il

y a un déphasage de −π/2 entre u et i : la tension a un retard sur le courant d’un quart
de période.

♥ À basses fréquences (ω → 0), une bobine se comporte comme un fil et un condensateur
comme un interrupteur ouvert.

♥ À hautes fréquences (ω → +∞), une bobine se comporte comme un interrupteur ouvert
et un condensateur comme un fil.

La relation u = Z × i étant analogue à la loi d’Ohm, on en déduit que les lois d’associations
d’impédances sont équivalentes à celles valables pour les résistors.

¬ L’impédance complexe d’un circuit RLC série est donc ZRLC = R + jLω + 1
jCω

=

jRCω − LCω2 + 1
jCω

.

3



Circuits électriques en régime sinusoïdal forcé

⋆ Exercice résolu

■ À revoir ■ Maîtrisé

Étude du courant dans un circuit

Énoncé
Soit le circuit ci-dessous, que l’on étudie en régime sinusoïdal établi. On cherche i(t) sous la

forme i(t) = I cos(ωt + φ).

E cos(ωt)

i(t)

L

C

R

1. Donner l’expression de l’amplitude complexe I du courant en fonction de I et φ.
2. Montrer que le circuit peut se simplifier à l’étude d’une impédance équivalente Z, dont

on donnera l’expression, alimentée par la source idéale de tension E cos(ωt).
3. En déduire une expression de I en fonction des données de l’énoncé.
4. Comment peut-on déterminer I et φ ?

Résolution

1. On a i(t) = Iejωt avec I = Iejφ.
2. L’association parallèle entre R et L a une impédance équivalente Z1 telle que

1
Z1

= 1
jLω

+ 1
R

= jLω + R

jLRω
. Nécessairement, Z1 = jLRω

R + jLω
.

On associe cette impédance au condensateur qui est en série, et alors :
Z = 1

jCω
+ Z1 = 1

jCω
+ jLRω

R + jLω
.

En mettant ce résultat sous forme de fraction, il vient alors que :

Z = R + jLω − RLCω2

jRCω − LCω2
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Circuits électriques en régime sinusoïdal forcé

⋆ Exercice résolu

■ À revoir ■ Maîtrisé

3. On a le circuit équivalent ci-dessous :

E

I

Z

La loi des mailles associée à la loi d’Ohm complexe donne que E = Z × I, et donc que :

I = jRCω − LCω2

R + jLω − RLCω2 × E

4. On a I = |I| et φ = arg(I).
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Circuits électriques en régime sinusoïdal forcé

2 Puissance et énergie en régime sinusoïdal forcé

■ À revoir ■ Maîtrisé

1 Valeur moyenne et valeur efficace

Soit un signal périodique s(t) de période T .
La valeur moyenne ⟨s⟩ de ce signal se calcule à partir de son intégrale :

⟨s⟩ = 1
T

∫ T

0
s(t)dt

La valeur efficace Seff de ce signal se calcule à partir de son intégrale :

Seff =

√
1
T

∫ T

0
s2(t)dt =

√
⟨s2⟩

Un signal sinusoïdal s(t) = S cos(ωt) a une moyenne nulle : ⟨s⟩ = 0 , mais une valeur

efficace Seff non-nulle : Seff = S√
2

.

♥ La valeur efficace d’un signal périodique dépend de la forme dudit signal. Par exemple,
un signal créneaux symétrique d’amplitude S a une valeur efficace Seff = S ; un signal triangulaire
d’amplitude S a une valeur efficace Seff = S/

√
3...

♥ La valeur efficace d’un courant ou d’une tension variables au cours du temps correspond
à la valeur d’un courant continu ou d’une tension continue qui produirait un échauffement

identique dans un résistor : ⟨PJ ⟩ = R × I2
eff = U2

eff
R

.

♥ La tension efficace est celle affichée par un voltmètre en mode alternatif AC ; de même
avec le courant efficace.

2 Facteur de puissance

Soit un dipôle alimenté en régime sinusoïdal forcé par une efficace Ueff et une intensité
efficace Ieff. Si l’on note φ le déphasage entre la tension et l’intensité du courant, la puissance
moyenne reçue par ce dipôle est :

⟨P⟩ = Ueff × Ieff × cos(φ)

On appelle la grandeur cos(φ) le facteur de puissance : il est sans unité, et compris entre 0
et 1.

Si l’on note Z l’impédance complexe de ce dipôle, on a :

φ = arg (Z)
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3 Transport d’énergie électrique

Si l’on considère les pertes par effet Joule le long d’une ligne de tension, on aura :

PJ = R × I2
eff = R × ⟨P⟩2

U2
eff cos2(φ)

avec ⟨P⟩ la puissance active à transmettre jusqu’au bout de la ligne.
Ainsi, augmenter la tension de transport diminue fortement le courant et donc les pertes

Joule, proportionnelles à I2
eff. C’est la raison pour laquelle le transport d’énergie électrique est

réalisé en haute ou très haute tension.
De même, un facteur de puissance faible implique un courant plus important, donc des pertes

plus grandes dans les lignes. Les installations industrielles compensent donc leur déphasage
(moteurs inductifs) à l’aide de batteries de condensateurs pour réduire ces pertes.
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Circuits électriques en régime sinusoïdal forcé

⋆ Exercice résolu

■ À revoir ■ Maîtrisé

Amélioration du facteur de puissance

Énoncé
Une installation inductive d’impédance Z = R + jLω alimentée par un courant de fréquence

f = 50 Hz consomme la puissance P = 60 kW sous une tension efficace Ueff = 5,0 kV avec une
intensité efficace Ieff = 20 A.

1. Calculer le facteur de puissance. En déduire la valeur de φ.
2. Déterminer la relation entre φ, R, L et ω.
3. Déterminer la relation entre Ueff, Ieff, R, L et ω.
4. Déduire des questions précédentes les valeurs de R et L.
5. On place un condensateur en dérivation aux bornes de l’installation pour que le courant

fourni soit en phase avec la tension. Quelle doit être la capacité C du condensateur ?
6. Quelle est alors l’intensité efficace du courant d’alimentation ?

Résolution

1. On a P = UeffIeff cos(φ) donc le facteur de puissance vaut cos(φ) = P
UeffIeff

= 0,60. On
en déduit que φ = arccos(0,60) = 53,1◦ = 0,927 rad.

2. On a : φ = arg(Z) = arctan
(

Lω

R

)
.

3. u(t) = Zi(t) donc U = ZI. En passant au module et en observant que |U | =
√

2Ueff et
|I| =

√
2Ieff, on a donc Ueff = |Z|Ieff, c’est-à-dire : Ueff =

√
R2 + L2ω2Ieff.

4. Les deux égalités suivantes sont vérifiées :
{

U2
eff = (R2 + L2ω2)I2

eff

Lω = R tan(φ)
. En injectant la

deuxième équation dans la première, on en déduit que U2
eff = R2(1 + tan2(φ))I2

eff.

Or 1 + tan2(φ) = 1
cos2(φ) , donc U2

eff = R2I2
eff

cos2(φ) , et alors R = Ueff

Ieff
× cos(φ) = 150 Ω.

On en déduit que L = R

ω
tan(φ) = 0,63 H.
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Circuits électriques en régime sinusoïdal forcé

⋆ Exercice résolu

■ À revoir ■ Maîtrisé

5. En plaçant un condensateur en dérivation de l’installation, on a une impédance équiva-

lente telle que 1
Zéq

= 1
Z

+ 1
1/jCω

= 1
R + jLω

+ jCω = 1 + jRCω − LCω2

R + jLω
, donc

Zéq = R + jLω

1 + jRCω − LCω2 .

On veut un déphasage nul entre le courant et la tension, donc arg(Zéq) = 0. On en déduit

que arg(
Z︷ ︸︸ ︷

R + jLω)︸ ︷︷ ︸
φ

= arg(1 + jRCω − LCω2).

Nécessairement, φ = arg(1 − LCω2 + jRCω) = arctan
(

RCω

1 − LCω2

)
, et alors

tan(φ) = RCω

1 − LCω2 .

En isolant C dans cette équation, on a finalement C = tan(φ)
Rω + Lω2 tan(φ) = 10 µF.

6. On a toujours la même puissance de 60 kW à délivrer sous la même tension de 5 kV mais
avec un facteur de puissance cette fois égal à 1. Il vient donc que I ′

eff = P
Ueff

= 12 A : il y
a une nette diminution du courant.
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Circuits électriques en régime sinusoïdal forcé

⋆ Exercice résolu

■ À revoir ■ Maîtrisé

Facteur de puissance d’un atelier

Énoncé
Un atelier branché sur un réseau délivrant 227 V efficaces à f = 50 Hz comporte :

— un moteur de 3,68 kW, cos(φ1) = 0,740 ;
— un moteur de 7,36 kW, cos(φ2) = 0,760 ;
— vingt lampes résistives de 50 W.
1. Que valent les facteurs de puissance des lampes ?
2. Les différents composants sont-ils en série ou en dérivation de la source de tension ? Que

peut-on alors dire de la tension efficace de chacun d’entre eux ?
3. Exprimer les intensités efficaces complexes de chacun des composants, puis l’intensité

efficace complexe du courant entrant dans l’installation.
4. Calculer l’intensité efficace réelle du courant entrant dans l’installation. En déduire le

facteur de puissance cos(φat) de l’atelier.

Résolution
1. Les lampes ont des comportements résistifs, donc cos(φlampe) = 1 pour chaque lampe.
2. Les différents composants sont en dérivation : on peut s’en convaincre en imaginant que

si une lampe casse, les autres lampes et les moteurs seront quand même alimentés. Ils
sont donc soumis à la même tension efficace Ueff = 227 V.

3. — Pour le moteur 1 : P1 = UeffIeff,1 cos(φ1) donc Ieff,1 = 21,9 A et I1,eff = I1,effejφ1 .
— Pour le moteur 2 : de même, Ieff,2 = 42,7 A et I2,eff = I2,effejφ2 .

— Pour chaque lampe : Ilampe = Ilampe = Plampe

Ueff
= 0,220 A.

On a donc Ieff,total = I1,eff + I2,eff + 20Ilampe = I1,effejφ1 + I2,effejφ2 + 20Ilampe.

4. On a Ieff,total =
∣∣Ieff,total

∣∣.
Calculons alors les parties réelle et imaginaire de Ieff,total :

• Re(Ieff,total) = I1,eff cos(φ1) + I2,eff cos(φ2) + 20Ilampe = 53,1 A.
• Im(Ieff,total) = I1,eff sin(φ1) + I2,eff sin(φ2) = 42,4 A (on obtient les valeurs des sinus

grâce aux valeurs des cosinus).

On a alors Ieff,total =
√

Re(Ieff,total) + Im(Ieff,total) = 68,0 A.

Le facteur de puissance s’en déduit, car tan(φat) =
Im(Ieff,total)
Re(Ieff,total)

= 0,798, donc φat = 38,6◦

et cos(φat) = 0,782.
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Circuits électriques en régime sinusoïdal forcé

3 Résonance d’un circuit électrique

■ À revoir ■ Maîtrisé

La résonance est une situation très générale dans laquelle l’excitation périodique d’un
système à une fréquence ωr provoque une réponse de très forte amplitude.

Le courant circulant dans un circuit RLC série entre en résonance lorsqu’il est excité à
la pulsation propre ω0 du circuit. En d’autres termes, l’amplitude du courant électrique est
maximale à la pulsation propre ω0 du circuit.

Cette intensité maximale est indépendante de la valeur du facteur de qualité ou de la pulsation
propre du circuit.

Les pulsations de coupure ωc correspondent aux pulsations pour lesquelles on a :

I(ωc) = Imax√
2

Si l’on note ω
(1)
c et ω

(2)
c les deux pulsations de coupure (avec ω

(1)
c < ω

(2)
c ), la largeur du

pic de résonance ∆ω correspond à la largeur de l’intervalle [ω(1)
c , ω

(2)
c ] ; en d’autres termes :

∆ω = ω(2)
c − ω(1)

c

La largeur relative du pic de résonance en courant d’un circuit RLC dépend uniquement de
son facteur de qualité Q :

∆ω

ω0
= 1

Q

On en déduit qu’un circuit possédant un grand facteur de qualité aura un pic de résonance
en courant très étroit, alors qu’un petit facteur de qualité impliquera un pic de résonance en
courant assez large.

ω

I(ω)

Q = 5
Q = 2

Q = 0,7

ω0
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Circuits électriques en régime sinusoïdal forcé

⋆ Exercice résolu

■ À revoir ■ Maîtrisé

Étude de la résonance d’un circuit RLC série

Énoncé

On étudie un circuit RLC série en régime
sinusoïdal forcé, alimenté par une source idéale
de tension e(t) = E cos(ωt).

1. Exprimer l’impédance complexe de l’as-
sociation série R, L, C.

2. En déduire l’expression de l’amplitude
complexe I(ω) du courant en fonction
de E, R, L et C.

E cos(ωt)

L i(t)

C

R

3. Montrer que l’on peut écrire I(ω) = Imax

1 + jQ
(

ω

ω0
− ω0

ω

) . On donnera les expressions de

Imax, Q et ω0.
4. Définir la résonance en courant, et déterminer la pulsation ωr pour laquelle ce phénomène

a lieu.
5. Tracer l’allure de l’amplitude réelle I(ω) du courant en fonction de la pulsation ω en la

justifiant.
6. Quelle est l’influence du facteur de qualité Q sur le graphe I(ω) ?

Résolution

1. On ZRLC = R + jLω + 1
jCω

= 1 + jRCω − LCω2

jCω
.

2. Par une loi des mailles et une loi d’Ohm complexe, on a :

I(ω) = E

ZRLC

= jCω

1 + jRCω − LCω2 × E

12



Circuits électriques en régime sinusoïdal forcé

⋆ Exercice résolu

■ À revoir ■ Maîtrisé

3. On commence par observer que, pour ressembler à la forme proposée, il faut se débarrasser
de j et de ω au numérateur. On divise ainsi le numérateur et le dénominateur par jCω,
ce qui donne :

I(ω) = 1
1

jCω
+ R − Lω

j

× E

Ensuite, on utilise le fait que 1
j

= −j, ce qui donne une nouvelle expression de I(ω) :

I(ω) = 1

R + j
(

Lω − 1
Cω

) × E = E

R + j
(

Lω − 1
Cω

)
On divise alors le numérateur et le dénominateur par R afin d’obtenir un dénominateur
qui ressemble à 1 + j . . . :

I(ω) = E/R

1 + j

(
L

R
ω − 1/RC

ω

)
On souhaite identifier cette forme à celle proposée par l’énoncé :

I(ω) = Imax

1 + jQ
(

ω

ω0
− ω0

ω

) = Imax

1 + j
(

Q

ω0
ω − Qω0

ω

)

Par identification, on obtient donc


Imax = E/R

Q/ω0 = L/R

Qω0 = 1/RC

En multipliant la deuxième et la troisième équation, on a Q2 = L

R2C
et donc Q = 1

R

√
L

C
.

En divisant la troisième équation par la deuxième, on a ω2
0 = 1/RC

L/R
= 1

LC
, et donc

ω0 = 1√
LC

.
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Circuits électriques en régime sinusoïdal forcé

⋆ Exercice résolu

■ À revoir ■ Maîtrisé

4. La résonance en courant correspond à un maximum d’intensité électrique dans le circuit.

Or, l’amplitude du courant est I = |I| = Imax√
1 + Q2

(
ω

ω0
− ω0

ω

)2
; on remarque que le

courant est maximal si l’expression sous la racine est minimale, et donc si
(

ω

ω0
− ω0

ω

)2
= 0.

Ceci arrive à la pulsation de résonance ωr = ω0 , et le courant vaut I(ωr) = Imax .

5. On sait que I présente un maximum en ω = ω0. Par ailleurs, en étudiant les limites à
haute et basse fréquences, on a I(ω → 0) = 0 et I(ω → +∞) = 0.
On en déduit l’allure du graphe I(ω) :

ω

I(ω)

ω0

Imax

6. Plus le facteur de qualité sera grand, plus le pic de résonance sera étroit. La résonance en
courant aura cependant toujours lieu à la pulsation propre ω0 du circuit.
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