
Bilans thermodynamiques

1 Bilans d’énergie

■ À revoir ■ Maîtrisé

1 Équilibre d’un système thermodynamique

On dit qu’un système thermodynamique est :

— ouvert s’il peut perdre ou gagner de l’énergie et/ou de la matière au cours du temps ;
— fermé s’il peut perdre ou gagner de l’énergie (mais pas de la matière) au cours du temps ;
— isolé s’il ne peut perdre ou gagner ni matière, ni énergie au cours du temps.

¬ L’eau parcourant une canalisation est un système ouvert : elle peut entrer et sortir de la
canalisation, et échanger de l’énergie sous forme de pression ou de chaleur.

¬ L’eau contenue dans un verre d’eau est un système fermé : sa masse reste constante,
mais elle peut échanger de l’énergie sous forme de pression ou de chaleur.

¬ L’eau contenue dans un récipient fermé aux parois rigides et calorifugées est un système
isolé : sa masse reste constante, et elle ne peut échanger d’énergie sous forme de pression (parois
rigides) ou de chaleur (parois calorifugées).

2 Convention de signes en thermodynamique

En thermodynamique, les transferts d’énergie sont toujours comptés vis-à-vis du système
étudié. Si l’énergie est cédée à l’extérieur, alors elle sera considérée comme négative ; si l’énergie
provient de l’extérieur, alors elle sera considérée comme positive.

3 Travail des forces de pression

Le travail élémentaire des forces de pression fourni par l’extérieur à un système s’écrit :

δW ext
p = −pext dV

où V représente le volume du système et pext la pression extérieure. dV est donc la variation de
volume ayant lieu pendant une durée infinitésimale.

♥ Le travail des forces de pression est positif si le système se comprime : il reçoit de
l’énergie de la part de l’extérieur sous forme de pression.

♥ Le travail des forces de pression est négatif si le système se dilate : il fournit de l’énergie
à l’extérieur sous forme de pression.

Transformation à volume constant
Le travail isochore des forces de pression est nul :

W iso-V
p = 0
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Transformation à pression constante
Le travail monobare des forces de pression pour évoluer du volume initial Vi au volume

initial Vf est égal à :
W mono-p

p = −pext × (Vf − Vi)

♥ Ce résultat est également valable pour une transformation isobare ; on a alors pext = p
avec p la pression constante du système lors de la transformation.

Transformation à température constante
Le travail isotherme des forces de pression pour faire évoluer de manière quasi-statique un

gaz parfait du volume initial Vi au volume initial Vf est égal à :

W iso-T,G.P.
p = −n R T × ln

(
Vf

Vi

)
4 Transferts thermiques

On appelle quantité de chaleur Q toute transfert d’énergie n’étant pas d’origine mécanique
entre deux systèmes thermodynamiques.

Il existe trois façons de faire des transferts thermiques :

— Par conduction (transfert thermique « de proche en proche ») ;
— Par convection (transfert thermique « par déplacement de fluide ») ;
— Par rayonnement (transfert thermiques « par ondes électromagnétiques »).

Dans tous ces cas, les transferts thermiques se font des zones de hautes températures vers
les zones de basses températures.

Un système thermodynamique est à l’équilibre thermique avec son environnement si la tem-
pérature intérieure T et la température extérieure Text sont égales. Il n’y a alors pas d’échanges
thermiques entre l’extérieur et l’intérieur du système.

On appelle transformation adiabatique une transformation thermodynamique pour laquelle
aucun échange de chaleur n’a lieu avec l’extérieur : Q = 0 .

♥ Un récipient aux parois calorifugées empêche tout transfert thermique à travers lesdites
parois. Cependant, cela n’impose pas nécessairement une transformation adiabatique pour le
système en son sein : une quantité de chaleur peut provenir d’une résistance, par exemple.

♥ Si un système thermodynamique est en contact avec une résistance R parcourue par un
courant I, alors il reçoit une puissance thermique PJ = RI2, et donc une quantité de chaleur
QJ = RI2∆t pendant une durée ∆t (cette expression n’est valable que si le courant I est
constant).
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5 Premier principe de la thermodynamique en système fermé

Pour tout système thermodynamique fermé dont les énergie cinétique et potentielle restent
constantes, l’énergie interne U ne peut être qu’échangée avec l’extérieur sous forme de travail
W ou de chaleur Q :

∆U = W ext + Qext

♥ Pour une transformation isochore et sans travail autre que celui des forces de pression,
on a donc Qiso-V = ∆U .

Utilisation du premier principe
Pour appliquer le premier principe :

— On définit le système fermé d’étude Σ ;
— On exprime sa différence d’énergie interne ∆U = Uf − Ui en fonction des paramètres du

problème ;
— On exprime W ext et/ou Qext pour la transformation (isobare, isochore, isotherme, adiaba-

tique...) ;
— On applique le premier principe à Σ pour déterminer la grandeur recherchée.
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Bilans thermodynamiques

⋆ Exercice résolu
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Expressions du travail des forces de pression

Énoncé
Déterminer l’expression du travail des forces de pression pour : une transformation isochore ;

une transformation monobare ; une transformation isotherme et quasi-statique d’un gaz parfait.

Résolution
• La transformation d’un système est isochore si le volume V du système est constant.

On a alors :

W ext
p =

∫ F

I

−pext dV

=
∫ F

I

−pext × 0 car le volume est constant

= 0

• La transformation d’un système est monobare si la pression extérieure pext est constante.
On a alors :

W ext
p =

∫ f

i

−pext dV

= −pext

∫ f

i

dV car la pression extérieure est constante

= −pext × (Vf − Vi)
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• La transformation d’un système est isotherme si la température T du système est constante.
La transformation d’un système est quasi-statique si chaque état intermédiaire entre l’état
initial et l’état final est un état d’équilibre mécanique. La pression p du système est alors
toujours égale à la pression pext de l’extérieur.
On a alors :

W ext
p =

∫ f

i

−pext dV

=
∫ f

i

−p dV car la transformation est quasi-statique

=
∫ f

i

−nRT

V
dV car le système est un gaz parfait

= −nR

∫ f

i

T × dV

V
car le système est fermé

= −nRT

∫ f

i

dV

V
car la transformation est isotherme

= −nRT ln
(

Vf

Vi

)
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Chauffe-eau électrique

Énoncé
Considérons un chauffe-eau électrique constitué de parois calorifugées mais ayant en son sein

une résistance électrique R = 50 Ω parcouru par un courant constant I = 5 A. La contenance
du chauffe-eau est V = 100 L.

On assimile l’eau à une phase condensée idéale de masse volumique µ = 1 kg L−1 et de
capacité thermique massique à volume constant cV = 4,20 J K−1 g−1 ; ce sera le système d’étude
lors de ce problème.

On souhaite déterminer la durée nécessaire ∆t pour faire passer l’eau de Ti = 20 ◦C à
Tf = 60 ◦C.

1. Exprimer la variation d’énergie interne ∆U du système en fonction de µ, V , cV , Tf et Ti.
2. Justifier le fait que le travail mécanique échangé avec l’extérieur W ext est nul. Exprimer

par ailleurs la quantité de chaleur Qext apportée à l’eau en fonction de R, I et ∆t.
3. Appliquer le premier principe de la thermodynamique au système. En déduire l’expression

puis la valeur de ∆t.

Résolution
1. Initialement, l’eau, de masse m = µV a pour énergie interne Ui = µV cV Ti. Son énergie

interne finale est Uf = µV cV Tf . On en déduit que la variation d’énergie interne est :

∆U = µV cV (Tf − Ti)

2. La transformation est isochore car le volume de l’eau est constant. On en déduit que le
travail échangé avec l’extérieur est :

W ext = 0

De plus, la seule 1 chaleur apportée à l’eau lors de ce problème est 2 :

Qext = RI2 × ∆t

1. Le fait que les parois soient calorifugées indiquent qu’aucun transport de chaleur ne se fait à travers
elles, mais cela n’implique pas que la transformation soit adiabatique !

2. On remarquera que Qext est bien positif car l’eau reçoit effectivement de la chaleur de la part de la
résistance.
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3. En appliquant le premier principe de la thermodynamique ∆U = W ext + Qext, on a alors :

µV cV (Tf − Ti) = 0 + RI2∆t

On en déduit donc que :

∆t = µV cV (Tf − Ti)
RI2

= 1 × 100 × 4,20 × 103 × (60 − 20)
50 × 52

= 13,4 × 103 s
= 3 h44 min
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Explosion d’un ballon

Énoncé
Un ballon de baudruche possède un volume d’air initial Vi = 3 L à la température Ti = 15 ◦C,

sous pression atmosphérique patm = 1 bar constante. On chauffe lentement le ballon, ce qui
permet de considérer la transformation comme isobare.

Le système d’étude est l’air contenu dans le ballon. Il sera modélisé par un gaz parfait
diatomique, de capacité thermique molaire à volume constant CV,m = 5

2R. On néglige toute
perte thermique à travers les parois du ballon.

On cherche à déterminer la puissance de chauffe PC nécessaire pour que ce ballon explose
en une durée ∆t = 1 min, sachant que son volume maximal est Vmax = 5Vi.

1. Soit Tf la température finale du ballon avant l’explosion. Montrer, à l’aide de la loi des
gaz parfaits, que Tf = 5Ti.

2. Exprimer la variation d’énergie interne ∆U du système entre l’état initial et l’état final en
fonction de n (quantité de gaz dans le ballon), R (constante des gaz parfaits) et Ti. En
utilisant la loi des gaz parfaits, en déduire que ∆U = 10patmVi.

3. Déterminer les expressions du travail mécanique W ext et de la chaleur Qext apportés par
l’extérieur en fonction de patm, Vi, PC et ∆t.

4. Par application du premier principe de la thermodynamique, déterminer l’expression de
PC en fonction des données de l’énoncé, puis calculer sa valeur numérique.

Résolution

1. Puisque la transformation est isobare, on a pi = pf , c’est-à-dire ��nRTi

Vi
= ��nRTf

Vf
et donc

Tf = Ti × Vf

Vi
. Or Vf = Vmax = 5Vi donc Tf = Ti × 5Vi

Vi
, d’où Tf = 5Ti .

2. Initialement, les n moles d’air ont pour énergie interne Ui = nCV,mTi = 5
2nRTi. L’énergie

interne finale est Uf = 5
2nRTf , avec Tf = 5Ti. On en déduit que la variation d’énergie

interne est :
∆U = 5

2nR(Tf − Ti) = 5
2nR(5Ti − Ti) = 10nRTi

Enfin, on sait que piVi = nRTi par la loi des gaz parfaits, avec 3 pi = patm. Il vient alors
que

∆U = 10patmVi

3. Puisque la transformation est monobare, on a p = pext avec pext = patm.
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3. La transformation est monobare car la pression extérieure patm est constante. On en déduit
que le travail échangé avec l’extérieur est :

W = −patm(Vf − Vi) = −patm(5Vi − Vi) = −4patmVi

De plus, la seule 4 chaleur apportée à l’eau lors de ce problème est :

Q = PC × ∆t

4. En appliquant le premier principe de la thermodynamique ∆U = W + Q, on a alors :

10patmVi = −4patmVi + PC∆t

On en déduit donc que :

PC = 14patmVi

∆t
= 70 W

4. Le fait que les parois soient calorifugées indiquent qu’aucun transport de chaleur ne se fait à travers
elles, mais cela n’implique pas que la transformation soit adiabatique !
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Cycle de Carnot d’un gaz parfait

Attention, l’énoncé n’est pas le même que dans le cours !

Énoncé

Considérons n = 1 mol de gaz parfait diato-
mique (CV,m = 3

2R) faisant l’objet d’un cycle
quasi-statique dit de Carnot :

— AB : détente isotherme à la tempéra-
ture T1 = 600 K jusqu’au volume VB =
2 × VA ;

— BC : détente adiabatique jusqu’à la tem-
pérature T2 = 300 K ;

— CD : compression isotherme à la tempé-
rature T2 ;

— DA : compression adiabatique jusqu’au
volume VA.

Exprimer puis calculer QAB et WBC .

Résolution
Pour l’ensemble du problème, on choisit comme système Σ le gaz parfait, de capacité

thermique CV = 3
2nR.

• La transformation AB est isotherme : on en déduit que ∆UAB = CV (TB − TA) = 0 et
que WAB = −nRT1 ln

(
VB

VA

)
= −nRT1 ln(2).

Par application du premier principe à Σ, on a ∆UAB = WAB + QAB, c’est-à-dire :
QAB = −WAB = nRT1 ln(2) = 3,46 kJ.

• La transformation BC est adiabatique : on en déduit que ∆UAB = CV (TC − TB) =
CV (T2 − T1) et que QBC = 0.
Par application du premier principe à Σ, on a ∆UBC = WBC + QBC , c’est-à-dire :
WBC = 3

2nR(T2 − T1) = 3,74 kJ.
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La température du bain

Énoncé
On désire prendre un bain dans une baignoire de volume V = 100 L. On dispose, pour la

remplir, d’un réservoir d’eau chaude à TC = 60 ◦C et d’un réservoir d’eau froide à TF = 18 ◦C.
On suppose que l’eau liquide est une phase condensée idéale de capacité thermique massique

à volume constant cV et de masse volumique µ = 1 kg L−1. On néglige par ailleurs toute perte
thermique ainsi que la capacité thermique de la baignoire.

On souhaite déterminer les masses d’eau chaude mC et d’eau froide mF nécessaires à verser
dans la baignoire pour la remplir totalement d’une eau à température finale T = 32 ◦C. Pour
cela, on choisit comme système thermodynamique l’ensemble {eau chaude + eau froide}, qui
deviendra plus tard le système {eau tiède}.

1. Exprimer l’énergie interne initiale Ui du système en fonction de mC , mF , cV , TC et TF .
De même, exprimer l’énergie interne finale Uf du système en fonction de mC , mF , cV et
T . En déduire la variation d’énergie interne ∆U .

2. Que valent le travail W ext et la quantité de chaleur Qext extérieurs reçus par le système
lors de la transformation ? Justifier.

3. En appliquant le premier principe de la thermodynamique au système, donner une équation
liant mC , mF , TC , TF , et T .

4. On pose M la masse totale d’eau. Calculer M . Exprimer par ailleurs M en fonction de
mC et mF ; en déduire l’expression de mF en fonction de M et mC .
En injectant cette expression de mF dans l’équation de la question précédente, en déduire
l’expression puis la valeur de mC . En déduire la valeur de mF .

Résolution
1. Initialement, le système a pour énergie interne :

Ui = Ui,chaud + Ui,froid

= mC × cV × TC + mF × cV × TF

Son énergie interne finale est :

Uf = Uf,chaud + Uf,froid

= mC × cV × T + mF × cV × T

= (mC + mF ) × cV × T

On en déduit que la variation d’énergie interne est :
∆U = Uf − Ui = cV × [(mC + mF )T − mCTC − mF TF ]
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2. La transformation est isochore car le volume de l’eau est constant. On en déduit 5 que le
travail échangé avec l’extérieur est :

W ext = 0

De plus, aucune chaleur n’est apportée à l’eau ou cédée par l’eau, car la capacité thermique
de la baignoire est nulle (elle ne peut pas absorber de chaleur) et car les pertes thermiques
sont négligées :

Qext = 0

3. En appliquant le premier principe de la thermodynamique ∆U = W ext + Qext, on a alors :

cV × [(mC + mF )T − mCTC − mF TF ] = 0

En simplifiant par cV , il vient donc :

(mC + mF )T − mCTC − mF TF = 0

4. On a M = µ × V = 100 kg. Cette masse est uniquement constituée des eaux initialement
chaudes et froides : M = mC + mF . On en déduit que mF = M − mC .
On peut réinjecter cette nouvelle expression dans l’équation précédente. Cela donne :

MT − mCTC − (M − mC)TF = 0

Il suffit alors d’isoler mC :

mC = M × T − TF

TC − TF
= 33 kg

Nécessairement, mF = M − mC = 67 kg.

5. On pourrait également dire que la transformation est monobare, ce qui est totalement vrai, et donc
que W ext = −patm(Vf − Vi). Or le volume final est égal au volume initial, donc on tombe sur le même
résultat.
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1 Enthalpie

L’enthalpie est une fonction d’état extensive, définie par :

H = U + pV

Pour une transformation monobare dont les états initial et final sont des états d’équilibre
ou une transformation isobare, on peut reformuler le premier principe sous forme du premier
principe enthalpique :

∆H = W̸=p + Q

avec W ̸=p le travail autre que celui des forces de pression et Q la chaleur échangée entre les
instant initial et final.

♥ Pour une transformation isobare et sans travail autre que celui des forces de pression,
on a donc Qiso-p = ∆H .

2 Changement de température à pression extérieure constante

Pour une phase condensée idéale
L’enthalpie d’une phase condensée incompressible et indilatable ne dépend que de sa tempé-

rature T : H = Cp × T + cste.
La constante Cp est appelée capacité thermique à pression constante, et s’exprime en joule

par kelvin J K−1.

Pour une phase condensée, ∆(pV ) ≪ ∆U , donc ∆H ≈ ∆U et donc CV ≈ CP . On note
alors C la capacité thermique de la phase condensée, qu’elle soit à volume constant ou à

pression constante. c = C

m
est ainsi la capacité thermique massique de la phase condensée

étudiée.
On retient donc que, pour une phase condensée idéale :

∆H = C × ∆T

Ou, en utilisant c :
∆H = m × c × ∆T

♥ On a donc également ∆U = C × ∆T = m × c × ∆T pour une phase condensée
idéale. Faire la distinction entre U et H pour une phase condensée idéale n’est pas utile.
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Pour un gaz parfait
L’enthalpie d’un gaz parfait ne dépend que de sa température T :

H = Cp × T + cste

C’est-à-dire :
∆H = Cp × ∆T

La constante Cp est appelée capacité thermique à pression constante, et s’exprime en
joule par kelvin J K−1.

Pour un gaz parfait, on définit alors l’indice adiabatique par :

γ = Cp

CV

Si l’on associe cette équation à la relation de Mayer Cp − CV = nR, on en déduit deux
expression pour CV et Cp d’un gaz parfait :

CV = nR

γ − 1 et Cp = nRγ

γ − 1

3 Enthalpie et changements d’état

La variation d’enthalpie accompagnant le passage d’une masse m d’un état 1 à un état 2
est proportionnelle à cette masse :

∆H = m × ∆1→2 h

∆1→2h est appelée enthalpie de changement d’état.

♥ On a ∆1→2h = −∆2→1h.

L’enthalpie de changement d’état lors du passage d’une phase ordonnée à une phase moins
ordonnée est positive : on reçoit de la chaleur pour désordonner les molécules.

L’enthalpie de changement d’état lors du passage d’une phase peu ordonnée à une phase
plus ordonnée est négative : on cède de la chaleur pour ordonner les molécules.

¬ L’enthalpie massique de fusion de l’eau à une pression p = 1 bar vaut
∆fush = 334 × 103 J kg−1 ; l’enthalpie massique de solidification à la même pression vaut
∆solh = −334 × 103 J kg−1.
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4 Enthalpie et combustions

Une combustion est une transformation chimique caractérisée notamment par une forte
libération de chaleur vers l’extérieur.

Le combustible est la substance qui « brûle » (bois, hydrocarbure 6...) alors que le comburant
est la substance qui entretient la combustion (très souvent, le dioxygène).

Les combustions sont des transformations le plus souvent totales : elles ne cessent que
lorsque le comburant ou le combustible viennent à manquer. L’un ou l’autre (voire les deux) est
donc le réactif limitant.

On appelle pouvoir calorifique supérieur (PCS) la quantité de chaleur dégagée par la
combustion complète d’une unité de masse de combustible, la chaleur étant totalement récupérée
tout au long de la combustion. Il s’exprime 7, dans le Système International, en joule par
kilogramme J kg−1.

Cela implique que les espèces présentes dans le réacteur sont à la même température du
début à la fin de la transformation, et que l’eau produite est sous forme liquide.

Il s’agit de la limite supérieure de l’énergie récupérable lors de cette combustion.

On appelle pouvoir calorifique inférieur (PCI) la quantité de chaleur dégagée par la
combustion complète d’une unité de masse de combustible, la vapeur d’eau étant supposée non
condensée.

♥ Le PCI est donc toujours plus faible que le PCS, car de l’énergie a été « perdue » pour
vaporiser l’eau.

6. Un hydrocarbure est un composé organique ne contenant que les éléments carbone C et hydrogène
H. Il est donc de la forme CnHm avec n et m ∈ N∗.

7. Dans la littérature, le PCS est parfois donné en J L−1... ce qui rend le tout confus, puisqu’on utilise
le même symbole pour deux grandeurs proches mais différentes.
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Une seule réponse est correcte pour une même question.

Questions Réponses
1. Pour une transformation isochore, le travail des forces de
pression vaut :

□ W = 0

□ W = −nRT ln(Vf /Vi)

□ W = −pext(Vf − Vi)

2. Pour une transformation isochore, la chaleur échangée
vaut :

□ Q = ∆H

□ Q = nRT ln(Vf /Vi)

□ Q = ∆U

3. Pour une transformation monobare, le travail des forces
de pression vaut :

□ W = 0

□ W = −nRT ln(Vf /Vi)

□ W = −pext(Vf − Vi)

4. Pour une transformation monobare, la chaleur échangée
vaut :

□ Q = 0

□ Q = nRT ln(Vf /Vi)

□ Q = ∆H

5. Pour une transformation isotherme d’un gaz parfait, le
travail des forces de pression vaut :

□ W = 0

□ W = −nRT ln(Vf /Vi)

□ W = −pext(Vf − Vi)

6. Pour une transformation isotherme d’un gaz parfait, la
chaleur échangée vaut :

□ Q = ∆U

□ Q = nRT ln(Vf /Vi)

□ Q = ∆H

7. Pour une transformation adiabatique, la chaleur
échangée vaut :

□ Q = 0

□ Q = nRT ln(Vf /Vi)

□ Q = ∆U

8. Pour une transformation adiabatique, le travail des forces
extérieures vaut :

□ W = 0
□ W = ∆H

□ W = ∆U
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Indications Réponses

1. Une transformation isochore conserve le volume du
système : le travail des forces de pression est donc nul (il
n’y a ni compression, ni dilatation/détente).

■ W = 0

□ W = −nRT ln(Vf /Vi)

□ W = −pext(Vf − Vi)

2. Le premier principe donne : ∆U = W + Q. Or W = 0,
donc Q = ∆U .

□ Q = ∆H

□ Q = nRT ln(Vf /Vi)

■ Q = ∆U

3. Voir l’exercice résolu sur les expressions du travail des
forces de pression. Il faut noter que cette expression est
également vraie pour une transformation isobare, et alors
pext = p.

□ W = 0

□ W = −nRT ln(Vf /Vi)

■ W = −pext(Vf − Vi)

4. Le premier principe enthalpique, valable pour une
transformation monobare, donne : ∆H = W ′ + Q. Or
W ′ = 0 (pas de travail autre que celui des forces de
pression), donc Q = ∆H. Il faut noter que cette expression
est également vraie pour une transformation isobare.

□ Q = 0

□ Q = nRT ln(Vf /Vi)

■ Q = ∆H

5. Voir l’exercice résolu sur les expressions du travail des
forces de pression. Cette expression n’est valable que pour
un gaz parfait, et pas pour une phase condensée !

□ W = 0

■ W = −nRT ln(Vf /Vi)

□ W = −pext(Vf − Vi)

6. Le premier principe donne : ∆U = W + Q. Or
∆U = CV × ∆T = CV × 0 car la transformation est
isotherme. On en déduit que Q = −W = nRT ln(Vf /Vi).

□ Q = ∆U

■ Q = nRT ln(Vf /Vi)

□ Q = ∆H

7. Par définition. ■ Q = 0

□ Q = nRT ln(Vf /Vi)

□ Q = ∆U

8. Le premier principe donne : ∆U = W + Q. Or Q = 0,
donc W = ∆U .

□ W = 0
□ W = ∆H

■ W = ∆U
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